Abstract:
We prove that the Gelfand–Shilov spaces Sβα are topological algebras
under the Moyal ⋆-product if and only if α⩾β. These spaces
of test functions can be used to construct a noncommutative field theory.
The star product depends on the noncommutativity parameter continuously in their
topology. We also prove that the series expansion of the Moyal product
converges absolutely in Sβα if and only if β<1/2.
This publication is cited in the following 23 articles:
Soloviev M., “Inclusion Theorems For the Moyal Multiplier Algebras of Generalized Gelfand-Shilov Spaces”, Integr. Equ. Oper. Theory, 93:5 (2021), 52
Chaichian M., Mnatsakanova M.N., Vernov Yu.S., “Towards An Axiomatic Formulation of Noncommutative Quantum Field Theory. II”, Nucl. Phys. B, 950 (2020), 114846
M. A. Soloviev, “Spaces of Type $S$ as Topological Algebras under Twisted Convolution and Star Product”, Proc. Steklov Inst. Math., 306 (2019), 220–241
M. A. Soloviev, “Spaces of type $S$ and deformation quantization”, Theoret. and Math. Phys., 201:3 (2019), 1682–1700
P. Adam, V. A. Andreev, A. Isar, V. I. Man'ko, M. A. Man'ko, “Star product, discrete Wigner functions, and spin-system tomograms”, Theoret. and Math. Phys., 186:3 (2016), 346–364
Mnatsakanova M.N., Vernov Yu.S., “Irreducibility of the Set of Field Operators in Nc QFT”, Phys. Atom. Nuclei, 76:10 (2013), 1254–1256
Antipin K.V., Mnatsakanova M.N., Vernov Yu.S., “Haag's Theorem in Noncommutative Quantum Field Theory”, Phys. Atom. Nuclei, 76:8 (2013), 965–968
M. A. Soloviev, “Twisted convolution and Moyal star product of generalized functions”, Theoret. and Math. Phys., 172:1 (2012), 885–900
M. A. Soloviev, “Generalized Weyl correspondence and Moyal multiplier algebras”, Theoret. and Math. Phys., 173:1 (2012), 1359–1376
Rakic D., Teofanov N., “Progressive Gelfand-Shilov Spaces and Wavelet Transforms”, J. Funct. Space Appl., 2012, 951819
Zahn J., “Divergences in Quantum Field Theory on the Noncommutative Two-Dimensional Minkowski Space with Grosse-Wulkenhaar Potential”, Ann Henri Poincaré, 12:4 (2011), 777–804
Antipin K.V., Vernov Yu.S., Mnatsakanova M.N., “Extension of Haag's Theorem in the Case of the Lorentz Invariant Noncommunitative Quantum Field Theory in a Space with Arbitrary Dimension”, Moscow University Physics Bulletin, 66:4 (2011), 349–353
Fischer A., Szabo R.J., “Propagators and matrix basis on noncommutative Minkowski space”, Phys Rev D, 84:12 (2011), 125010
Fischer A., Szabo R.J., “UV/IR duality in noncommutative quantum field theory”, Gen Relativity Gravitation, 43:9 (2011), 2509–2522
Soloviev M.A., “Moyal multiplier algebras of the test function spaces of type S”, J Math Phys, 52:6 (2011), 063502
Piacitelli G., “Twisted covariance as a non-invariant restriction of the fully covariant DFR model”, Commun. Math. Phys., 295:3 (2010), 701–729
M. A. Soloviev, “Noncommutative deformations of quantum field theories, locality, and causality”, Theoret. and Math. Phys., 163:3 (2010), 741–752
Mnatsakanova M.N., Vernov Yu.S., “Reconstruction theorem and cluster properties of Wightman functions in noncommutative quantum field theory”, Physics of Particles and Nuclei, 41:6 (2010), 973–975
Fischer A., Szabo R.J., “Duality covariant quantum field theory on noncommutative Minkowski space”, J. High Energy Phys., 2009, no. 2, 031, 36 pp.