Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 3, Pages 395–406
DOI: https://doi.org/10.4213/tmf611
(Mi tmf611)
 

This article is cited in 17 scientific papers (total in 17 papers)

Isomonodromic deformations of Heun and Painlevé equations

S. Yu. Slavyanov

Saint-Petersburg State University
References:
Abstract: Continuing the study of the relationship between the Heun and the Painlevé classes of equations reported in two previous papers, we formulate and prove the main theorem expressing this relationship. We give a Hamiltonian interpretation of the isomonodromic deformation condition and propose an alternative classification of the Painlevé equations, which includes ten equations.
Received: 07.10.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 3, Pages 744–753
DOI: https://doi.org/10.1007/BF02551029
Bibliographic databases:
Language: Russian
Citation: S. Yu. Slavyanov, “Isomonodromic deformations of Heun and Painlevé equations”, TMF, 123:3 (2000), 395–406; Theoret. and Math. Phys., 123:3 (2000), 744–753
Citation in format AMSBIB
\Bibitem{Sla00}
\by S.~Yu.~Slavyanov
\paper Isomonodromic deformations of Heun and Painlev\'e equations
\jour TMF
\yr 2000
\vol 123
\issue 3
\pages 395--406
\mathnet{http://mi.mathnet.ru/tmf611}
\crossref{https://doi.org/10.4213/tmf611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794008}
\zmath{https://zbmath.org/?q=an:0984.34076}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 3
\pages 744--753
\crossref{https://doi.org/10.1007/BF02551029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088926700003}
Linking options:
  • https://www.mathnet.ru/eng/tmf611
  • https://doi.org/10.4213/tmf611
  • https://www.mathnet.ru/eng/tmf/v123/i3/p395
  • This publication is cited in the following 17 articles:
    1. S. I. Tertichniy, “On the Monodromy-Preserving Deformation of a Double Confluent Heun Equation”, Proc. Steklov Inst. Math., 326 (2024), 303–338  mathnet  crossref  crossref
    2. Xia J., Xu Sh.-X., Zhao Yu.-Q., “Isomonodromy Sets of Accessory Parameters For Heun Class Equations”, Stud. Appl. Math., 146:4 (2021), 901–952  crossref  isi
    3. S. I. Tertychnyi, “Solution space monodromy of a special double confluent Heun equation and its applications”, Theoret. and Math. Phys., 201:1 (2019), 1426–1441  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Combot T., “Integrability of the One Dimensional Schrodinger Equation”, J. Math. Phys., 59:2 (2018), 022105  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    5. S. Yu. Slavyanov, O. L. Stesik, “Antiquantization of deformed Heun-class equations”, Theoret. and Math. Phys., 186:1 (2016), 118–125  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Slavyanov S., “Antiquantization of Deformed Equations of Heun Class”, Proceedings of the International Conference Days on Diffraction 2015, IEEE, 2015, 310–312  isi
    7. Rumanov I., “Beta Ensembles, Quantum Painlevé Equations and Isomonodromy Systems”, Algebraic and Analytic Aspects of Integrable Systems and Painlev? Equations, Contemporary Mathematics, 651, ed. Dzhamay A. Maruno K. Ormerod C., Amer Mathematical Soc, 2015, 125–155  crossref  mathscinet  zmath  isi
    8. S. Slavyanov, 2015 Days on Diffraction (DD), 2015, 1  crossref
    9. A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423  mathnet  crossref  isi  scopus
    10. V. V. Tsegel'nik, “Hamiltonians associated with the third and fifth Painlevé equations”, Theoret. and Math. Phys., 162:1 (2010), 57–62  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    11. S.Yu. Slavyanov, A.Ya. Kazakov, F. R. Vukajlović, “RELATIONS BETWEEN HEUN EQUATIONS AND PAINLEVE EQUATIONS”, Albanian J. Math., 4:4 (2010)  crossref
    12. M. V. Babich, “On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension $2\times 2$. Derivation of the Painlevé VI equation”, Russian Math. Surveys, 64:1 (2009), 45–127  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    13. B. I. Suleimanov, ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its $L$$A$ pairs”, Theoret. and Math. Phys., 156:3 (2008), 1280–1291  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. S. Yu. Slavyanov, F. R. Vukailovich, “Isomonodromic deformations and “antiquantization” for the simplest ordinary differential equations”, Theoret. and Math. Phys., 150:1 (2007), 123–131  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    15. V. V. Tsegel'nik, “Hamiltonians associated with the sixth Painlevé equation”, Theoret. and Math. Phys., 151:1 (2007), 482–491  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    16. Tarasov, VF, “The Heun-Schrodinger radial equation with two auxiliary parameters for H-like atoms”, Modern Physics Letters B, 16:25 (2002), 937  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    17. Slavyanov S.Y., “Kovalevskaya's dynamics and Schrodinger equations of Heun class”, Operator Methods in Ordinary and Partial Differential Equations, Operator Theory : Advances and Applications, 132, 2002, 395–402  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:616
    Full-text PDF :300
    References:67
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025