Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 3, Pages 528–537
DOI: https://doi.org/10.4213/tmf6108
(Mi tmf6108)
 

This article is cited in 4 scientific papers (total in 4 papers)

Stability of $n$-particle pseudorelativistic systems

G. M. Zhislin

Scientific Research Institute of Radio Physics
Full-text PDF (453 kB) Citations (4)
References:
Abstract: For a system $Z_n$ of $n$ identical pseudorelativistic particles, we show that under some restrictions on the pair interaction potentials, there is an infinite sequence of numbers $n_s$, $s=1,2,\dots$, such that the system $Z_n$ is stable for $n=n_s$, and the inequality $\sup_sn_{s+1}n_s^{-1}<+\infty$ holds. Furthermore, we show that if the system $Z_n$ is stable, then the discrete spectrum of the energy operator for the relative motion of the system $Z_n$ is nonempty for some values of the total momentum of the particles in the system. The stability of $n$-particle systems was previously studied only for nonrelativistic particles.
Keywords: pseudorelativistic operator, many-particle system, stability, discrete spectrum.
Received: 16.11.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 3, Pages 1322–1330
DOI: https://doi.org/10.1007/s11232-007-0116-y
Bibliographic databases:
Language: Russian
Citation: G. M. Zhislin, “Stability of $n$-particle pseudorelativistic systems”, TMF, 152:3 (2007), 528–537; Theoret. and Math. Phys., 152:3 (2007), 1322–1330
Citation in format AMSBIB
\Bibitem{Zhi07}
\by G.~M.~Zhislin
\paper Stability of $n$-particle pseudorelativistic systems
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 528--537
\mathnet{http://mi.mathnet.ru/tmf6108}
\crossref{https://doi.org/10.4213/tmf6108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402250}
\zmath{https://zbmath.org/?q=an:1131.81013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1322Z}
\elib{https://elibrary.ru/item.asp?id=9918141}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1322--1330
\crossref{https://doi.org/10.1007/s11232-007-0116-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249733400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748891135}
Linking options:
  • https://www.mathnet.ru/eng/tmf6108
  • https://doi.org/10.4213/tmf6108
  • https://www.mathnet.ru/eng/tmf/v152/i3/p528
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :197
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024