Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 3, Pages 502–517
DOI: https://doi.org/10.4213/tmf6106
(Mi tmf6106)
 

This article is cited in 12 scientific papers (total in 12 papers)

Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice

Zh. I. Abdullaev, I. A. Ikromov

A. Navoi Samarkand State University
References:
Abstract: We consider the two-particle Schrödinger operator H(k)H(k) on the νν-dimensional lattice Zν and prove that the number of negative eigenvalues of H(k) is finite for a wide class of potentials ˆv.
Keywords: Hamiltonian, Schrödinger operator, discrete spectrum, Birman–Schwinger principle.
Received: 19.06.2006
Revised: 02.12.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 3, Pages 1299–1312
DOI: https://doi.org/10.1007/s11232-007-0114-0
Bibliographic databases:
Language: Russian
Citation: Zh. I. Abdullaev, I. A. Ikromov, “Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice”, TMF, 152:3 (2007), 502–517; Theoret. and Math. Phys., 152:3 (2007), 1299–1312
Citation in format AMSBIB
\Bibitem{AbdIkr07}
\by Zh.~I.~Abdullaev, I.~A.~Ikromov
\paper Finiteness of the~number of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 502--517
\mathnet{http://mi.mathnet.ru/tmf6106}
\crossref{https://doi.org/10.4213/tmf6106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402248}
\zmath{https://zbmath.org/?q=an:1131.81007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1299A}
\elib{https://elibrary.ru/item.asp?id=9918139}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1299--1312
\crossref{https://doi.org/10.1007/s11232-007-0114-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249733400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748837883}
Linking options:
  • https://www.mathnet.ru/eng/tmf6106
  • https://doi.org/10.4213/tmf6106
  • https://www.mathnet.ru/eng/tmf/v152/i3/p502
  • This publication is cited in the following 12 articles:
    1. Janikul Abdullaev, Ahmad Khalkhuzhaev, Khabibullo Makhmudov, “DISCRETE SPECTRUM ASYMPTOTICS FOR THE TWO-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE”, J Math Sci, 2024  crossref
    2. Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. S. Shotemirov, “O beskonechnosti chisla sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, Izv. vuzov. Matem., 2024, no. 12, 3–11  mathnet  crossref
    3. J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828  crossref
    4. J. I. Abdullaev, A. M. Khalkhuzhaev, Yu. S. Shotemirov, “On the Infinite Number of Eigenvalues of the Two-Particle Schrödinger Operator on a Lattice”, Russ Math., 68:12 (2024), 25  crossref
    5. Zh. I. Abdullaev, A. M. Khalkhuzhaev, T. Kh. Rasulov, “Invariantnye podprostranstva i sobstvennye znacheniya trekhchastichnogo diskretnogo operatora Shredingera”, Izv. vuzov. Matem., 2023, no. 9, 3–19  mathnet  crossref
    6. J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov, “Invariant Subspaces and Eigenvalues of the Three-Particle Discrete Schrödinger Operators”, Russ Math., 67:9 (2023), 1  crossref
    7. J. I. Abdullaev, A. M. Toshturdiev, “Invariant Subspaces of the Shrödinger Operator with a Finite Support Potential”, Lobachevskii J Math, 43:3 (2022), 728  crossref
    8. Muminov I M., Ghoshal S.K., “Spectral Features of Two-Particle Schrodinger Operator on D-Dimensiional Lattice”, Complex Anal. Oper. Theory, 14:1 (2020), 11  crossref  mathscinet  isi
    9. Ibrogimov O.O., “Spectral Analysis of the Spin-Boson Hamiltonian With Two Bosons For Arbitrary Coupling and Bounded Dispersion Relation”, Rev. Math. Phys., 32:6 (2020), 2050015  crossref  mathscinet  isi
    10. Muminov M.I., Ghoshal S.K., “Spectral Attributes of Self-Adjoint Fredholm Operators in Hilbert Space: a Rudimentary Insight”, Complex Anal. Oper. Theory, 13:3 (2019), 1313–1323  crossref  mathscinet  isi
    11. Bach V., de Siqueira Pedra W., Lakaev S.N., “Bounds on the Discrete Spectrum of Lattice Schrodinger Operators”, J. Math. Phys., 59:2 (2018), 022109  crossref  mathscinet  zmath  isi  scopus
    12. Muminov M.I., Lokman C., “Finiteness of Discrete Spectrum of the Two-Particle Schrodinger Operator on Diamond Lattices”, Nanosyst.-Phys. Chem. Math., 8:3 (2017), 310–316  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:594
    Full-text PDF :322
    References:91
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025