Abstract:
We consider the two-particle Schrödinger operator H(k)H(k) on
the νν-dimensional lattice Zν and prove that the number of negative
eigenvalues of H(k) is finite for a wide class of potentials ˆv.
Citation:
Zh. I. Abdullaev, I. A. Ikromov, “Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice”, TMF, 152:3 (2007), 502–517; Theoret. and Math. Phys., 152:3 (2007), 1299–1312
\Bibitem{AbdIkr07}
\by Zh.~I.~Abdullaev, I.~A.~Ikromov
\paper Finiteness of the~number of eigenvalues of the~two-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 502--517
\mathnet{http://mi.mathnet.ru/tmf6106}
\crossref{https://doi.org/10.4213/tmf6106}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402248}
\zmath{https://zbmath.org/?q=an:1131.81007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1299A}
\elib{https://elibrary.ru/item.asp?id=9918139}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1299--1312
\crossref{https://doi.org/10.1007/s11232-007-0114-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249733400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748837883}
Linking options:
https://www.mathnet.ru/eng/tmf6106
https://doi.org/10.4213/tmf6106
https://www.mathnet.ru/eng/tmf/v152/i3/p502
This publication is cited in the following 12 articles:
Janikul Abdullaev, Ahmad Khalkhuzhaev, Khabibullo Makhmudov, “DISCRETE SPECTRUM ASYMPTOTICS FOR THE TWO-PARTICLE SCHRÖDINGER OPERATOR ON A LATTICE”, J Math Sci, 2024
Zh. I. Abdullaev, A. M. Khalkhuzhaev, I. S. Shotemirov, “O beskonechnosti chisla sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, Izv. vuzov. Matem., 2024, no. 12, 3–11
J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828
J. I. Abdullaev, A. M. Khalkhuzhaev, Yu. S. Shotemirov, “On the Infinite Number of Eigenvalues of the Two-Particle Schrödinger Operator on a Lattice”, Russ Math., 68:12 (2024), 25
Zh. I. Abdullaev, A. M. Khalkhuzhaev, T. Kh. Rasulov, “Invariantnye podprostranstva i sobstvennye znacheniya trekhchastichnogo diskretnogo operatora Shredingera”, Izv. vuzov. Matem., 2023, no. 9, 3–19
J. I. Abdullaev, A. M. Khalkhuzhaev, T. H. Rasulov, “Invariant Subspaces and Eigenvalues of the Three-Particle Discrete Schrödinger Operators”, Russ Math., 67:9 (2023), 1
J. I. Abdullaev, A. M. Toshturdiev, “Invariant Subspaces of the Shrödinger Operator with a Finite Support Potential”, Lobachevskii J Math, 43:3 (2022), 728
Muminov I M., Ghoshal S.K., “Spectral Features of Two-Particle Schrodinger Operator on D-Dimensiional Lattice”, Complex Anal. Oper. Theory, 14:1 (2020), 11
Ibrogimov O.O., “Spectral Analysis of the Spin-Boson Hamiltonian With Two Bosons For Arbitrary Coupling and Bounded Dispersion Relation”, Rev. Math. Phys., 32:6 (2020), 2050015
Muminov M.I., Ghoshal S.K., “Spectral Attributes of Self-Adjoint Fredholm Operators in Hilbert Space: a Rudimentary Insight”, Complex Anal. Oper. Theory, 13:3 (2019), 1313–1323
Bach V., de Siqueira Pedra W., Lakaev S.N., “Bounds on the Discrete Spectrum of Lattice Schrodinger Operators”, J. Math. Phys., 59:2 (2018), 022109
Muminov M.I., Lokman C., “Finiteness of Discrete Spectrum of the Two-Particle Schrodinger Operator on Diamond Lattices”, Nanosyst.-Phys. Chem. Math., 8:3 (2017), 310–316