|
This article is cited in 9 scientific papers (total in 9 papers)
Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice
Zh. I. Abdullaev, I. A. Ikromov A. Navoi Samarkand State University
Abstract:
We consider the two-particle Schrödinger operator $H(k)$ on
the $\nu$-dimensional lattice $\mathbb{Z}^{\nu}$ and prove that the number of negative
eigenvalues of $H(k)$ is finite for a wide class of potentials $\hat{v}$.
Keywords:
Hamiltonian, Schrödinger operator, discrete spectrum, Birman–Schwinger principle.
Received: 19.06.2006 Revised: 02.12.2006
Citation:
Zh. I. Abdullaev, I. A. Ikromov, “Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice”, TMF, 152:3 (2007), 502–517; Theoret. and Math. Phys., 152:3 (2007), 1299–1312
Linking options:
https://www.mathnet.ru/eng/tmf6106https://doi.org/10.4213/tmf6106 https://www.mathnet.ru/eng/tmf/v152/i3/p502
|
Statistics & downloads: |
Abstract page: | 548 | Full-text PDF : | 304 | References: | 83 | First page: | 2 |
|