Abstract:
We present explicit recursion relations for the four-point superconformal
block functions that are essentially particular contributions of the given
conformal class to the four-point correlation function. The approach is based
on the analytic properties of the superconformal blocks as functions of
the conformal dimensions and the central charge of the superconformal algebra. We
compare the results with the explicit analytic expressions obtained for
special parameter values corresponding to the truncated operator product
expansion. These recursion relations are an efficient tool for numerically
studying the four-point correlation function in superconformal field theory
in the framework of the bootstrap approach, similar to that in the case of
the purely conformal symmetry.
Keywords:N=1 superconformal field theory, four-point conformal block function, recursion relation.
This publication is cited in the following 25 articles:
V. Belavin, J. Ramos Cabezas, B. Runov, “Shadow formalism for supersymmetric conformal blocks”, J. High Energ. Phys., 2024:11 (2024)
Yale Fan, Thomas G. Mertens, “Supergroup structure of Jackiw-Teitelboim supergravity”, J. High Energ. Phys., 2022:8 (2022)
Belavin V., Zhakenov A., “Agt Basis in Scft For C=3/2 and Uglov Polynomials”, Nucl. Phys. B, 958 (2020), 115133
Kos F., Oh J., “2D Small N=4 Long-Multiplet Superconformal Block”, J. High Energy Phys., 2019, no. 2, 001
Belavina V., Geiko R., “C-Recursion For Multi-Point Superconformal Blocks. Ns Sector”, J. High Energy Phys., 2018, no. 8, 112
Hikida Ya., Uetoko T., “Superconformal Blocks From Wilson Lines With Loop Corrections”, J. High Energy Phys., 2018, no. 8, 101
Lodato I., Merbis W., Zodinmawia, “Supersymmetric Galilean Conformal Blocks”, J. High Energy Phys., 2018, no. 9, 086
Chen H., Fitpatrick A.L., Kaplan J., Li D., Wang J., “Degenerate operators and the 1/c expansion: Lorentzian resummations, high order computations, and super-Virasoro blocks”, J. High Energy Phys., 2017, no. 3, 167
Bershtein M.A., Shchechkin A.I., “Bäcklund transformation of Painlevé III( D _{8} ) \textit function”, J. Phys. A-Math. Theor., 50:11 (2017), 115205
Poghosyan H., “The Light Asymptotic Limit of Conformal Blocks in N=1 Super Liouville Field Theory”, J. High Energy Phys., 2017, no. 9, 062
Poghossian R., “Recurrence Relations For the W-3 Conformal Blocks and N=2 SYM Partition Functions”, J. High Energy Phys., 2017, no. 11, 053
Lin Y.-H., Shao Sh.-H., Wang Y., Yin X., “(2,2) Superconformal Bootstrap in Two Dimensions”, J. High Energy Phys., 2017, no. 5, 112
Beccaria M., Fachechi A., Macorini G., Martina L., “Exact partition functions for deformed N = 2 $$ \mathcal{N}=2 $$ theories with N f = 4 $$ {\mathcal{N}}_f=4 $$ flavours”, J. High Energy Phys., 2016, no. 12, 029
Ciosmak P., Hadasz L., Manabe M., Sulkowski P., “Super-quantum curves from super-eigenvalue models”, J. High Energy Phys., 2016, no. 10, 044
Bershtein M.A., Shchechkin A.I., “Bilinear Equations on Painlevé Tau Functions From CFT”, Commun. Math. Phys., 339:3 (2015), 1021–1061
Fitzpatrick A.L., Kaplan J., Khandker Z.U., Li D., Poland D., Simmons-Duffin D., “Covariant Approaches To Superconformal Blocks”, J. High Energy Phys., 2014, no. 8, 129
Ahn Ch., Stanishkov M., “On the Renormalization Group Flow in Two Dimensional Superconformal Models”, Nucl. Phys. B, 885 (2014), 713–733
Belavin A., Mukhametzhanov B., “N=1 Superconformal Blocks with Ramond Fields From AGT Correspondence”, J. High Energy Phys., 2013, no. 1, 178
Osborn H., “Conformal Blocks for Arbitrary Spins in Two Dimensions”, Phys. Lett. B, 718:1 (2012), 169–172
Belavin V., “Conformal Blocks of Chiral Fields in N=2 Susy CFT and Affine Laumon Spaces”, J. High Energy Phys., 2012, no. 10, 156