Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 3, Pages 476–487
DOI: https://doi.org/10.4213/tmf6104
(Mi tmf6104)
 

This article is cited in 25 scientific papers (total in 25 papers)

N=1N=1 supersymmetric conformal block recursion relations

V. A. Belavinab

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
b International School for Advanced Studies (SISSA)
References:
Abstract: We present explicit recursion relations for the four-point superconformal block functions that are essentially particular contributions of the given conformal class to the four-point correlation function. The approach is based on the analytic properties of the superconformal blocks as functions of the conformal dimensions and the central charge of the superconformal algebra. We compare the results with the explicit analytic expressions obtained for special parameter values corresponding to the truncated operator product expansion. These recursion relations are an efficient tool for numerically studying the four-point correlation function in superconformal field theory in the framework of the bootstrap approach, similar to that in the case of the purely conformal symmetry.
Keywords: N=1 superconformal field theory, four-point conformal block function, recursion relation.
Received: 01.12.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 3, Pages 1275–1285
DOI: https://doi.org/10.1007/s11232-007-0112-2
Bibliographic databases:
Language: Russian
Citation: V. A. Belavin, “N=1 supersymmetric conformal block recursion relations”, TMF, 152:3 (2007), 476–487; Theoret. and Math. Phys., 152:3 (2007), 1275–1285
Citation in format AMSBIB
\Bibitem{Bel07}
\by V.~A.~Belavin
\paper $N=1$ supersymmetric conformal block recursion relations
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 476--487
\mathnet{http://mi.mathnet.ru/tmf6104}
\crossref{https://doi.org/10.4213/tmf6104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402246}
\zmath{https://zbmath.org/?q=an:1131.81030}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1275B}
\elib{https://elibrary.ru/item.asp?id=9918137}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1275--1285
\crossref{https://doi.org/10.1007/s11232-007-0112-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249733400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748918920}
Linking options:
  • https://www.mathnet.ru/eng/tmf6104
  • https://doi.org/10.4213/tmf6104
  • https://www.mathnet.ru/eng/tmf/v152/i3/p476
  • This publication is cited in the following 25 articles:
    1. V. Belavin, J. Ramos Cabezas, B. Runov, “Shadow formalism for supersymmetric conformal blocks”, J. High Energ. Phys., 2024:11 (2024)  crossref
    2. Yale Fan, Thomas G. Mertens, “Supergroup structure of Jackiw-Teitelboim supergravity”, J. High Energ. Phys., 2022:8 (2022)  crossref
    3. Belavin V., Zhakenov A., “Agt Basis in Scft For C=3/2 and Uglov Polynomials”, Nucl. Phys. B, 958 (2020), 115133  crossref  mathscinet  isi
    4. Kos F., Oh J., “2D Small N=4 Long-Multiplet Superconformal Block”, J. High Energy Phys., 2019, no. 2, 001  crossref  mathscinet  isi  scopus
    5. Belavina V., Geiko R., “C-Recursion For Multi-Point Superconformal Blocks. Ns Sector”, J. High Energy Phys., 2018, no. 8, 112  crossref  mathscinet  isi  scopus
    6. Hikida Ya., Uetoko T., “Superconformal Blocks From Wilson Lines With Loop Corrections”, J. High Energy Phys., 2018, no. 8, 101  crossref  mathscinet  zmath  isi  scopus
    7. Lodato I., Merbis W., Zodinmawia, “Supersymmetric Galilean Conformal Blocks”, J. High Energy Phys., 2018, no. 9, 086  crossref  mathscinet  isi  scopus
    8. Chen H., Fitpatrick A.L., Kaplan J., Li D., Wang J., “Degenerate operators and the 1/c expansion: Lorentzian resummations, high order computations, and super-Virasoro blocks”, J. High Energy Phys., 2017, no. 3, 167  crossref  mathscinet  isi  scopus
    9. Bershtein M.A., Shchechkin A.I., “Bäcklund transformation of Painlevé III( D _{8} ) \textit function”, J. Phys. A-Math. Theor., 50:11 (2017), 115205  crossref  mathscinet  zmath  isi  scopus
    10. Poghosyan H., “The Light Asymptotic Limit of Conformal Blocks in N=1 Super Liouville Field Theory”, J. High Energy Phys., 2017, no. 9, 062  crossref  mathscinet  isi  scopus
    11. Poghossian R., “Recurrence Relations For the W-3 Conformal Blocks and N=2 SYM Partition Functions”, J. High Energy Phys., 2017, no. 11, 053  crossref  mathscinet  isi  scopus
    12. Lin Y.-H., Shao Sh.-H., Wang Y., Yin X., “(2,2) Superconformal Bootstrap in Two Dimensions”, J. High Energy Phys., 2017, no. 5, 112  crossref  mathscinet  isi  scopus
    13. Beccaria M., Fachechi A., Macorini G., Martina L., “Exact partition functions for deformed N = 2
      $$ \mathcal{N}=2 $$
      theories with N f = 4
      $$ {\mathcal{N}}_f=4 $$
      flavours”, J. High Energy Phys., 2016, no. 12, 029  crossref  mathscinet  isi  elib  scopus
    14. Ciosmak P., Hadasz L., Manabe M., Sulkowski P., “Super-quantum curves from super-eigenvalue models”, J. High Energy Phys., 2016, no. 10, 044  crossref  mathscinet  isi  elib  scopus
    15. Bershtein M.A., Shchechkin A.I., “Bilinear Equations on Painlevé Tau Functions From CFT”, Commun. Math. Phys., 339:3 (2015), 1021–1061  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    16. Fitzpatrick A.L., Kaplan J., Khandker Z.U., Li D., Poland D., Simmons-Duffin D., “Covariant Approaches To Superconformal Blocks”, J. High Energy Phys., 2014, no. 8, 129  crossref  isi  scopus
    17. Ahn Ch., Stanishkov M., “On the Renormalization Group Flow in Two Dimensional Superconformal Models”, Nucl. Phys. B, 885 (2014), 713–733  crossref  mathscinet  zmath  adsnasa  isi  scopus
    18. Belavin A., Mukhametzhanov B., “N=1 Superconformal Blocks with Ramond Fields From AGT Correspondence”, J. High Energy Phys., 2013, no. 1, 178  crossref  mathscinet  zmath  isi  elib  scopus
    19. Osborn H., “Conformal Blocks for Arbitrary Spins in Two Dimensions”, Phys. Lett. B, 718:1 (2012), 169–172  crossref  mathscinet  adsnasa  isi  elib  scopus
    20. Belavin V., “Conformal Blocks of Chiral Fields in N=2 Susy CFT and Affine Laumon Spaces”, J. High Energy Phys., 2012, no. 10, 156  crossref  mathscinet  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:519
    Full-text PDF :255
    References:94
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025