Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 3, Pages 419–429
DOI: https://doi.org/10.4213/tmf6099
(Mi tmf6099)
 

This article is cited in 16 scientific papers (total in 16 papers)

The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices

J. C. Benjumeaa, J. Nuneza, A. F. Tenoriob

a University of Seville
b Universidad Pablo de Olavide
References:
Abstract: We compute the largest dimension of the Abelian Lie subalgebras contained in the Lie algebra gn of n×n strictly upper triangular matrices, where nN{1}. We do this by proving a conjecture, which we previously advanced, about this dimension. We introduce an algorithm and use it first to study the two simplest particular cases and then to study the general case.
Keywords: nilpotent Lie algebra, maximal Abelian dimension, strictly upper triangular matrix.
Received: 04.01.2007
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 3, Pages 1225–1233
DOI: https://doi.org/10.1007/s11232-007-0107-z
Bibliographic databases:
Language: Russian
Citation: J. C. Benjumea, J. Nunez, A. F. Tenorio, “The maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices”, TMF, 152:3 (2007), 419–429; Theoret. and Math. Phys., 152:3 (2007), 1225–1233
Citation in format AMSBIB
\Bibitem{BenNunTen07}
\by J.~C.~Benjumea, J.~Nunez, A.~F.~Tenorio
\paper The~maximal Abelian dimension of linear algebras formed by strictly upper triangular matrices
\jour TMF
\yr 2007
\vol 152
\issue 3
\pages 419--429
\mathnet{http://mi.mathnet.ru/tmf6099}
\crossref{https://doi.org/10.4213/tmf6099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402242}
\zmath{https://zbmath.org/?q=an:1137.17302}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1225B}
\elib{https://elibrary.ru/item.asp?id=9918132}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 3
\pages 1225--1233
\crossref{https://doi.org/10.1007/s11232-007-0107-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249733400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34748916425}
Linking options:
  • https://www.mathnet.ru/eng/tmf6099
  • https://doi.org/10.4213/tmf6099
  • https://www.mathnet.ru/eng/tmf/v152/i3/p419
  • This publication is cited in the following 16 articles:
    1. Ooms I A., “The Maximal Abelian Dimension of a Lie Algebra, Rentschler'S Property and Milovanov'S Conjecture”, Algebr. Represent. Theory, 23:3 (2020), 963–999  crossref  mathscinet  isi
    2. Ceballos M., Nunez J., Tenorio A.F., “Algorithm to compute abelian subalgebras and ideals in Malcev algebras”, Math. Meth. Appl. Sci., 39:16 (2016), 4892–4900  crossref  mathscinet  zmath  isi  scopus
    3. Ceballos M., Nunez J., Tenorio A.F., “Computing Abelian Subalgebras For Linear Algebras of Upper-Triangular Matrices From An Algorithmic Perspective”, Analele Stiint. Univ. Ovidius C., 24:2 (2016), 137–147  crossref  mathscinet  zmath  isi  scopus
    4. Ceballos M., Nunez J., Tenorio A.F., “Algorithmic Procedure To Compute Abelian Subalgebras and Ideals of Maximal Dimension of Leibniz Algebras”, Int. J. Comput. Math., 92:9, SI (2015), 1838–1854  crossref  mathscinet  zmath  isi  scopus
    5. Ceballos M., Nunez J., Tenorio A.F., “Abelian Subalgebras on Lie Algebras”, Commun. Contemp. Math., 17:4 (2015), 1550050  crossref  mathscinet  zmath  isi  elib  scopus
    6. Ceballos M., Nunez J., Tenorio A.F., “Triangular Configurations and Lie Algebras of Strictly Upper-Triangular Matrices”, Appl. Comput. Math., 13:1 (2014), 62–70  mathscinet  zmath  isi
    7. Ceballos M., Nunez J., Tenorio A.F., “Combinatorial structures and Lie algebras of upper triangular matrices”, Appl Math Lett, 25:3 (2012), 514–519  crossref  mathscinet  zmath  isi  scopus
    8. Nunez J., Tenorio A.F., “A computational study of a family of nilpotent Lie algebras”, Journal of Supercomputing, 59:1 (2012), 147–155  crossref  adsnasa  isi  scopus
    9. Ceballos M., Nunez J., Tenorio A.F., “Algorithmic Method to Obtain Abelian Subalgebras and Ideals in Lie Algebras”, Int. J. Comput. Math., 89:10 (2012), 1388–1411  crossref  mathscinet  zmath  isi  elib  scopus
    10. Benjumea J.C., Nunez J., Tenorio A.F., “Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras”, Algebr. Represent. Theory, 15:4 (2012), 697–713  crossref  mathscinet  zmath  isi  elib  scopus
    11. Benjumea J.C., Núñez J., Tenorio Á.F., “Computing the law of a family of solvable Lie algebras”, Internat. J. Algebra Comput., 19:3 (2009), 337–345  crossref  mathscinet  zmath  isi  scopus
    12. Ceballos M., Núñez J., Tenorio Á.F., “Algorithm to compute the maximal abelian dimension of Lie algebras”, Computing, 84:3-4 (2009), 231–239  crossref  mathscinet  zmath  isi  scopus
    13. Ceballos M., Nunez J., Tenorio A.F., “Abelian subalgebras in some particular types of Lie algebras”, Nonlinear Analysis-Theory Methods & Applications, 71:12 (2009), E401–E408  crossref  mathscinet  zmath  isi  scopus
    14. Ceballos M., Nunez J., Tenorio A.F., “An Algorithm to Compute Abelian Subalgebras in Linear Algebras of Upper-Triangular Matrices”, Computational Methods in Science and Engineering, AIP Conference Proceedings, 1148, 2009, 53–56  crossref  mathscinet  adsnasa  isi  scopus
    15. Ceballos M., Nunez J., Tenorio A.F., “Abelian Subalgebras in Low-Dimensional Solvable Lie Algebras”, Recent Advances in Applied Mathematics, Mathematics and Computers in Science and Engineering, 2009, 151–156  mathscinet  isi
    16. Ceballos M., Nunez J., Tenorio A.F., “The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices”, An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat., 16:1 (2008), 59–66  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :208
    References:43
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025