Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 2, Pages 339–355
DOI: https://doi.org/10.4213/tmf6091
(Mi tmf6091)
 

This article is cited in 21 scientific papers (total in 21 papers)

A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg–Landau equation

S. C. Mancas, S. R. Choudhury

Department of Matematics, University of Central Florida
References:
Abstract: Comprehensive numerical simulations of pulse solutions of the cubic-quintic Ginzburg–Landau equation (CGLE) reveal various intriguing and entirely novel classes of solutions. In particular, there are five new classes of pulse or solitary wave solutions, i.e., pulsating, creeping, snake, erupting, and chaotic solitons that are not stationary in time. They are spatially confined pulse-type structures whose envelopes exhibit complicated temporal dynamics. The numerical simulations also reveal very interesting bifurcation sequences of these pulses as the CGLE parameters are varied. We address the issues of central interest in this area, i.e., the conditions for the occurrence of the five categories of dissipative solitons and also the dependence of both their shape and their stability on the various CGLE parameters, i.e., the nonlinearity, dispersion, linear and nonlinear gain, loss, and spectral filtering. Our predictions for the variation of the soliton amplitudes, widths, and periods with the CGLE parameters agree with the simulation results. We here present detailed results for the pulsating solitary waves. Their regimes of occurrence, bifurcations, and the parameter dependences of the amplitudes, widths, and periods agree with the simulation results. We will address snakes and chaotic solitons in subsequent papers. This overall approach fails to address only the dissipative solitons in one class, i.e., the exploding or erupting solitons.
Keywords: variational formalism, complex Ginzburg–Landau equation, pulsating soliton.
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 2, Pages 1160–1172
DOI: https://doi.org/10.1007/s11232-007-0099-8
Bibliographic databases:
Language: Russian
Citation: S. C. Mancas, S. R. Choudhury, “A novel variational approach to pulsating solitons in the cubic-quintic Ginzburg–Landau equation”, TMF, 152:2 (2007), 339–355; Theoret. and Math. Phys., 152:2 (2007), 1160–1172
Citation in format AMSBIB
\Bibitem{ManCho07}
\by S.~C.~Mancas, S.~R.~Choudhury
\paper A~novel variational approach to pulsating solitons in the~cubic-quintic Ginzburg--Landau equation
\jour TMF
\yr 2007
\vol 152
\issue 2
\pages 339--355
\mathnet{http://mi.mathnet.ru/tmf6091}
\crossref{https://doi.org/10.4213/tmf6091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2429284}
\zmath{https://zbmath.org/?q=an:1131.35079}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1160M}
\elib{https://elibrary.ru/item.asp?id=9541939}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 2
\pages 1160--1172
\crossref{https://doi.org/10.1007/s11232-007-0099-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249211500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548387540}
Linking options:
  • https://www.mathnet.ru/eng/tmf6091
  • https://doi.org/10.4213/tmf6091
  • https://www.mathnet.ru/eng/tmf/v152/i2/p339
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024