Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 2, Pages 304–320
DOI: https://doi.org/10.4213/tmf6089
(Mi tmf6089)
 

This article is cited in 25 scientific papers (total in 25 papers)

Cylindrical Kadomtsev–Petviashvili equation: Old and new results

C. Kleina, V. B. Matveevb, A. O. Smirnovc

a Max Planck Institute for the Physics of Complex Systems
b Université de Bourgogne
c Saint-Petersburg State University of Aerospace Instrumentation
References:
Abstract: We review results on the cylindrical Kadomtsev–Petviashvili (CKP) equation, also known as the Johnson equation. The presentation is based on our results. In particular, we show that the Lax pairs corresponding to the KP and the CKP equations are gauge equivalent. We also describe some important classes of solutions obtained using the Darboux transformation approach. We present plots of exact solutions of the CKP equation including finite-gap solutions.
Keywords: Johnson equation, soliton, finite-gap solution, Darboux transformation, lump.
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 2, Pages 1132–1145
DOI: https://doi.org/10.1007/s11232-007-0097-x
Bibliographic databases:
Language: Russian
Citation: C. Klein, V. B. Matveev, A. O. Smirnov, “Cylindrical Kadomtsev–Petviashvili equation: Old and new results”, TMF, 152:2 (2007), 304–320; Theoret. and Math. Phys., 152:2 (2007), 1132–1145
Citation in format AMSBIB
\Bibitem{KleMatSmi07}
\by C.~Klein, V.~B.~Matveev, A.~O.~Smirnov
\paper Cylindrical Kadomtsev--Petviashvili equation: Old and new results
\jour TMF
\yr 2007
\vol 152
\issue 2
\pages 304--320
\mathnet{http://mi.mathnet.ru/tmf6089}
\crossref{https://doi.org/10.4213/tmf6089}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2429282}
\zmath{https://zbmath.org/?q=an:1131.35072}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1132K}
\elib{https://elibrary.ru/item.asp?id=9541937}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 2
\pages 1132--1145
\crossref{https://doi.org/10.1007/s11232-007-0097-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249211500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548460309}
Linking options:
  • https://www.mathnet.ru/eng/tmf6089
  • https://doi.org/10.4213/tmf6089
  • https://www.mathnet.ru/eng/tmf/v152/i2/p304
  • This publication is cited in the following 25 articles:
    1. Nazia Batool, W. Masood, Maryam Al Huwayz, Aljawhara H. Almuqrin, Samir A. El-Tantawy, “Interaction of two-dimensional electron-acoustic solitary waves in a cylindrical geometry and their applications in space plasmas”, Physics of Plasmas, 32:4 (2025)  crossref
    2. Zhao Zhang, Wencheng Hu, Qi Guo, Yury Stepanyants, “Solitons and lumps in the cylindrical Kadomtsev–Petviashvili equation. II. Lumps and their interactions”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:1 (2024)  crossref
    3. Xiangyu Yang, Zhen Wang, Zhao Zhang, “Solitons and lump waves to the elliptic cylindrical Kadomtsev–Petviashvili equation”, Communications in Nonlinear Science and Numerical Simulation, 131 (2024), 107837  crossref
    4. Wencheng Hu, Zhao Zhang, Qi Guo, Yury Stepanyants, “Solitons and lumps in the cylindrical Kadomtsev–Petviashvili equation. I. Axisymmetric solitons and their stability”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:1 (2024)  crossref
    5. Nerijus Sidorovas, Dmitri Tseluiko, Wooyoung Choi, Karima Khusnutdinova, “Nonlinear concentric water waves of moderate amplitude”, Wave Motion, 128 (2024), 103295  crossref
    6. L. Ostrovsky, E. Pelinovsky, V. Shrira, Y. Stepanyants, “Localized wave structures: Solitons and beyond”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 34:6 (2024)  crossref
    7. V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551  mathnet  crossref
    8. Peng W.-Q., Tian Sh.-F., Zhang T.-T., “Dynamics of the Soliton Waves, Breather Waves, and Rogue Waves to the Cylindrical Kadomtsev-Petviashvili Equation in Pair-Ion-Electron Plasma”, Phys. Fluids, 31:10 (2019), 102107  crossref  mathscinet  isi
    9. Gaillard P., “The Johnson Equation, Fredholm and Wronskian Representations of Solutions, and the Case of Order Three”, Adv. Math. Phys., 2018, 1642139  crossref  mathscinet  isi  scopus
    10. Jahangir R., Masood W., Siddiq M., Batool N., “Interaction and Resonance of Fast Magnetoacoustic Solitary Waves in Cylindrical Geometry For Dense Astrophysical Plasmas”, Phys. Plasmas, 25:10 (2018), 102113  crossref  isi  scopus
    11. Pierre Gaillard, “Multiparametric families of solutions to the Johnson equation.”, J. Phys.: Conf. Ser., 1141 (2018), 012102  crossref
    12. Stjepan Lugomer, “Laser generated Richtmyer–Meshkov and Rayleigh–Taylor instabilities and nonlinear wave-vortex paradigm in turbulent mixing. II. Near-central region of Gaussian spot”, Laser Part. Beams, 35:2 (2017), 210  crossref
    13. V. B. Matveev, A. O. Smirnov, “Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: A unified approach”, Theoret. and Math. Phys., 186:2 (2016), 156–182  mathnet  crossref  crossref  mathscinet  isi  elib
    14. Horikis T.P., Frantzeskakis D.J., “Ring Dark and Antidark Solitons in Nonlocal Media”, Opt. Lett., 41:3 (2016), 583–586  crossref  adsnasa  isi  scopus
    15. Lugomer S., “Laser generated Richtmyer?Meshkov instability and nonlinear wave paradigm in turbulent mixing: I. Central region of Gaussian spot”, Laser Part. Beams, 34:4 (2016), 687–704  crossref  isi  scopus
    16. Wang M., Zhang J., Li X., “Decay mode solutions to cylindrical KP equation”, Appl. Math. Lett., 62 (2016), 29–34  crossref  mathscinet  zmath  isi  elib  scopus
    17. Batool N., Masood W., Siddiq M., Jahangir R., “Exact solution of CKP equation and formation and interaction of two solitons in pair-ion-electron plasma”, Phys. Plasmas, 23:8 (2016), 082306  crossref  isi  elib  scopus
    18. Khusnutdinova K.R., Zhang X., “Long ring waves in a stratified fluid over a shear?flow”, J. Fluid Mech., 794 (2016), 17–44  crossref  mathscinet  zmath  isi  scopus
    19. Lu Zhuo-Sheng, Ren Wen-Xiu, “Wronskian Form Solutions For a Variable Coefficient Kadomtsev-Petviashvili Equation”, Commun. Theor. Phys., 61:3 (2014), 339–343  crossref  mathscinet  zmath  adsnasa  isi  scopus
    20. A. O. Smirnov, G. M. Golovachev, “Trekhfaznye resheniya nelineinogo uravneniya Shredingera v ellipticheskikh funktsiyakh”, Nelineinaya dinam., 9:3 (2013), 389–407  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:636
    Full-text PDF :380
    References:70
    First page:5
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025