Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 1, Pages 163–176
DOI: https://doi.org/10.4213/tmf6078
(Mi tmf6078)
 

This article is cited in 7 scientific papers (total in 7 papers)

Abelian Chern–Simons vortices and holomorphic Burgers hierarchy

O. K. Pashaev, Z. N. Gurkan

Izmir Institute of Technology
Full-text PDF (415 kB) Citations (7)
References:
Abstract: We consider the Abelian Chern–Simons gauge field theory in $2+1$ dimensions and its relation to the holomorphic Burgers hierarchy. We show that the relation between the complex potential and the complex gauge field as in incompressible and irrotational hydrodynamics has the meaning of the analytic Cole–Hopf transformation, linearizing the Burgers hierarchy and transforming it into the holomorphic Schrödinger hierarchy. The motion of planar vortices in Chern–Simons theory, which appear as pole singularities of the gauge field, then corresponds to the motion of zeros of the hierarchy. We use boost transformations of the complex Galilei group of the hierarchy to construct a rich set of exact solutions describing the integrable dynamics of planar vortices and vortex lattices in terms of generalized Kampe de Feriet and Hermite polynomials. We apply the results to the holomorphic reduction of the Ishimori model and the corresponding hierarchy, describing the dynamics of magnetic vortices and the corresponding lattices in terms of complexified Calogero–Moser models. We find corrections (in terms of Airy functions) to the two-vortex dynamics from the Moyal space–time noncommutativity.
Keywords: Chern–Simons gauge theory, Burgers hierarchy, noncommutative vortex, Ishimori model, holomorphic equation, Kampe de Feriet polynomial.
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 1, Pages 1017–1029
DOI: https://doi.org/10.1007/s11232-007-0086-0
Bibliographic databases:
Language: Russian
Citation: O. K. Pashaev, Z. N. Gurkan, “Abelian Chern–Simons vortices and holomorphic Burgers hierarchy”, TMF, 152:1 (2007), 163–176; Theoret. and Math. Phys., 152:1 (2007), 1017–1029
Citation in format AMSBIB
\Bibitem{PasGur07}
\by O.~K.~Pashaev, Z.~N.~Gurkan
\paper Abelian Chern--Simons vortices and holomorphic Burgers hierarchy
\jour TMF
\yr 2007
\vol 152
\issue 1
\pages 163--176
\mathnet{http://mi.mathnet.ru/tmf6078}
\crossref{https://doi.org/10.4213/tmf6078}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2398332}
\zmath{https://zbmath.org/?q=an:1131.37062}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152.1017P}
\elib{https://elibrary.ru/item.asp?id=9557752}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 1
\pages 1017--1029
\crossref{https://doi.org/10.1007/s11232-007-0086-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249207000014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548397234}
Linking options:
  • https://www.mathnet.ru/eng/tmf6078
  • https://doi.org/10.4213/tmf6078
  • https://www.mathnet.ru/eng/tmf/v152/i1/p163
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:449
    Full-text PDF :219
    References:54
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024