Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 152, Number 1, Pages 101–117
DOI: https://doi.org/10.4213/tmf6073
(Mi tmf6073)
 

This article is cited in 9 scientific papers (total in 9 papers)

Algebraic properties of Gardner's deformations for integrable systems

A. V. Kiselevab

a Institut des Hautes Études Scientifiques
b Max Planck Institute for Mathematics
Full-text PDF (532 kB) Citations (9)
References:
Abstract: We formulate an algebraic definition of Gardner's deformations for completely integrable bi-Hamiltonian evolutionary systems. The proposed approach extends the class of deformable equations and yields new integrable evolutionary and hyperbolic Liouville-type systems. We find an exactly solvable two-component extension of the Liouville equation.
Keywords: Gardner's deformation, integrable family, adjoint system, Hamiltonian, recursion relation.
English version:
Theoretical and Mathematical Physics, 2007, Volume 152, Issue 1, Pages 963–976
DOI: https://doi.org/10.1007/s11232-007-0081-5
Bibliographic databases:
Language: Russian
Citation: A. V. Kiselev, “Algebraic properties of Gardner's deformations for integrable systems”, TMF, 152:1 (2007), 101–117; Theoret. and Math. Phys., 152:1 (2007), 963–976
Citation in format AMSBIB
\Bibitem{Kis07}
\by A.~V.~Kiselev
\paper Algebraic properties of Gardner's deformations for integrable systems
\jour TMF
\yr 2007
\vol 152
\issue 1
\pages 101--117
\mathnet{http://mi.mathnet.ru/tmf6073}
\crossref{https://doi.org/10.4213/tmf6073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2398327}
\zmath{https://zbmath.org/?q=an:1131.37060}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...152..963K}
\elib{https://elibrary.ru/item.asp?id=9557747}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 152
\issue 1
\pages 963--976
\crossref{https://doi.org/10.1007/s11232-007-0081-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000249207000009}
\elib{https://elibrary.ru/item.asp?id=14786652}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34548403033}
Linking options:
  • https://www.mathnet.ru/eng/tmf6073
  • https://doi.org/10.4213/tmf6073
  • https://www.mathnet.ru/eng/tmf/v152/i1/p101
  • This publication is cited in the following 9 articles:
    1. Kiselev A.V., Krutov A.O., “On the (Non)Removability of Spectral Parameters in Z2-Graded Zero-Curvature Representations and Its Applications”, Acta Appl. Math., 160:1 (2019), 129–167  crossref  mathscinet  isi  scopus
    2. Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.  mathnet  crossref
    3. S. Ya. Startsev, “On differential substitutions for evolution systems”, Ufa Math. J., 9:4 (2017), 108–113  mathnet  crossref  isi  elib
    4. Kiseley A.V. Krutov A., “Gardner's Deformations as Generators of New Integrable Systems”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012021  crossref  isi  scopus
    5. Gomes J.F., Franca G.S., Zimerman A.H., “Nonvanishing boundary condition for the mKdV hierarchy and the Gardner equation”, J. Phys. A: Math. Theor., 45:1 (2012), 015207  crossref  mathscinet  zmath  adsnasa  isi  scopus
    6. Kiselev A.V., “Homological Evolutionary Vector Fields in Korteweg-de Vries, Liouville, Maxwell, and Several Other Models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012058  crossref  isi  scopus
    7. Kiselev A.V. Krutov A.O., “Gardner's Deformations of the Graded Korteweg-de Vries Equations Revisited”, J. Math. Phys., 53:10 (2012), 103511  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162:2 (2010), 149–162  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Hussin V., Kiselev A.V., Krutov A. ., Wolf T., “N=2 supersymmetric a=4-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation”, J. Math. Phys., 51:8 (2010), 083507  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:541
    Full-text PDF :220
    References:66
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025