Abstract:
We formulate an algebraic definition of Gardner's deformations for completely
integrable bi-Hamiltonian evolutionary systems. The proposed approach extends
the class of deformable equations and yields new integrable evolutionary and
hyperbolic Liouville-type systems. We find an exactly solvable two-component
extension of the Liouville equation.
Citation:
A. V. Kiselev, “Algebraic properties of Gardner's deformations for integrable systems”, TMF, 152:1 (2007), 101–117; Theoret. and Math. Phys., 152:1 (2007), 963–976
This publication is cited in the following 9 articles:
Kiselev A.V., Krutov A.O., “On the (Non)Removability of Spectral Parameters in Z2-Graded Zero-Curvature Representations and Its Applications”, Acta Appl. Math., 160:1 (2019), 129–167
Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.
S. Ya. Startsev, “On differential substitutions for evolution systems”, Ufa Math. J., 9:4 (2017), 108–113
Kiseley A.V. Krutov A., “Gardner's Deformations as Generators of New Integrable Systems”, Physics and Mathematics of Nonlinear Phenomena 2013, Journal of Physics Conference Series, 482, IOP Publishing Ltd, 2014, 012021
Gomes J.F., Franca G.S., Zimerman A.H., “Nonvanishing boundary condition for the mKdV hierarchy and the Gardner equation”, J. Phys. A: Math. Theor., 45:1 (2012), 015207
Kiselev A.V., “Homological Evolutionary Vector Fields in Korteweg-de Vries, Liouville, Maxwell, and Several Other Models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012058
Kiselev A.V. Krutov A.O., “Gardner's Deformations of the Graded Korteweg-de Vries Equations Revisited”, J. Math. Phys., 53:10 (2012), 103511
A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162:2 (2010), 149–162
Hussin V., Kiselev A.V., Krutov A. ., Wolf T., “N=2 supersymmetric a=4-Korteweg-de Vries hierarchy derived via Gardner's deformation of Kaup-Boussinesq equation”, J. Math. Phys., 51:8 (2010), 083507