Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 2, Pages 302–310
DOI: https://doi.org/10.4213/tmf6046
(Mi tmf6046)
 

This article is cited in 33 scientific papers (total in 33 papers)

Brukner–Zeilinger invariant information

Sh. Luo

Chinese Academy of Sciences
References:
Abstract: We present an alternative interpretation of the notion of invariant information by establishing that it is directly related to the total ordinary variance of a quantum state. Here, "total" means summing the variance over any complete orthogonal set of observables or, equivalently, averaging over a certain sufficiently general ensemble of the observables. This simple, intuitive substratum of the Brukner–Zeilinger invariant information sheds further light on the informational and statistical nature of quantum measurements.
Keywords: invariant information, quantum measurement, total variance, renormalization.
Received: 08.08.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 2, Pages 693–699
DOI: https://doi.org/10.1007/s11232-007-0054-8
Bibliographic databases:
Language: Russian
Citation: Sh. Luo, “Brukner–Zeilinger invariant information”, TMF, 151:2 (2007), 302–310; Theoret. and Math. Phys., 151:2 (2007), 693–699
Citation in format AMSBIB
\Bibitem{Luo07}
\by Sh.~Luo
\paper Brukner--Zeilinger invariant information
\jour TMF
\yr 2007
\vol 151
\issue 2
\pages 302--310
\mathnet{http://mi.mathnet.ru/tmf6046}
\crossref{https://doi.org/10.4213/tmf6046}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338161}
\zmath{https://zbmath.org/?q=an:1138.81361}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..693L}
\elib{https://elibrary.ru/item.asp?id=9521588}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 2
\pages 693--699
\crossref{https://doi.org/10.1007/s11232-007-0054-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246615900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249006918}
Linking options:
  • https://www.mathnet.ru/eng/tmf6046
  • https://doi.org/10.4213/tmf6046
  • https://www.mathnet.ru/eng/tmf/v151/i2/p302
  • This publication is cited in the following 33 articles:
    1. Yajing Fan, Lulu Li, “Average and maximal coherence based on the modified generalized Wigner–Yanase–Dyson skew information”, Quantum Inf Process, 24:3 (2025)  crossref
    2. Yajing Fan, Meng Zhang, “Quantifying the quantumness of pure-state ensembles via coherence of Gram matrix”, Physics Letters A, 508 (2024), 129506  crossref
    3. Bin Chen, Xiaofen Huang, Shao-Ming Fei, “On complementarity and distribution of imaginarity in finite dimensions”, Results in Physics, 60 (2024), 107671  crossref
    4. Huihui Li, Nan Li, Shunlong Luo, Yue Zhang, “Characterizing SU(1,1) nonclassicality via variance”, Phys. Scr., 99:4 (2024), 045114  crossref
    5. Ruonan Ren, Yu Luo, Yongming Li, “The standard symmetrized skew information and its applications”, J. Phys. A: Math. Theor., 57:23 (2024), 235305  crossref
    6. Sahil, “State-dependent and state-independent uncertainty relations for skew information and standard deviation”, Phys. Scr., 99:11 (2024), 115125  crossref
    7. Z. Abuali, F. H. Kamin, R. J. S. Afonso, D. O. Soares-Pinto, S. Salimi, “Generalized uncertainty relation between thermodynamic variables in quantum thermodynamics”, Quantum Inf Process, 22:5 (2023)  crossref
    8. Fu Sh., Luo Sh., “From Wave-Particle Duality to Wave-Particle-Mixedness Triality: An Uncertainty Approach”, Commun. Theor. Phys., 74:3 (2022), 035103  crossref  isi  scopus
    9. Yizhou Liu, Shunlong Luo, Yuan Sun, “Total, classical and quantum uncertainties generated by channels”, Theoret. and Math. Phys., 213:2 (2022), 1613–1631  mathnet  crossref  crossref  mathscinet  adsnasa
    10. Nan Li, Shunlong Luo, Yuan Sun, “Brukner-Zeilinger invariant information in the presence of conjugate symmetry”, Phys. Rev. A, 106:3 (2022)  crossref
    11. V. S. Indrajith, R. Muthuganesan, R. Sankaranarayanan, “Fidelity-based purity and coherence for quantum states”, Int. J. Quantum Inform., 20:06 (2022)  crossref
    12. Chen B., Fei Sh.-M., “Average Coherence With Respect to Complementary Measurements”, Commun. Theor. Phys., 73:1 (2021), 015103  crossref  mathscinet  isi
    13. Liu Y., DeBrota J.B., “Relating Measurement Disturbance, Information, and Orthogonality”, Phys. Rev. A, 104:5 (2021), 052216  crossref  mathscinet  isi  scopus
    14. Sun Yu., Luo Sh., “Coherence as Uncertainty”, Phys. Rev. A, 103:4 (2021), 042423  crossref  mathscinet  isi
    15. Sun Yu., Li N., “Quantifying Asymmetry Via Generalized Wigner-Yanase-Dyson Skew Information”, J. Phys. A-Math. Theor., 54:29 (2021), 295303  crossref  mathscinet  isi
    16. Shunlong Luo, Yuan Sun, “Skew information revisited: Its variants and a comparison of them”, Theoret. and Math. Phys., 202:1 (2020), 104–111  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    17. Chen B., Fei Sh.-M., “Total Variance and Invariant Information in Complementary Measurements”, Commun. Theor. Phys., 72:6 (2020), UNSP 065106  crossref  mathscinet  isi
    18. Zhang Yu., Luo Sh., “Quantum States as Observables: Their Variance and Nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211  crossref  mathscinet  isi
    19. Huang H., Wu Zh., Fei Sh.-M., “Uncertainty and Complementarity Relations Based on Generalized Skew Information”, EPL, 132:6 (2020), 60007  crossref  isi
    20. Cai L., “Quantum Uncertainty Based on Metric Adjusted Skew Information”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 21:2 (2018), 1850006  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :231
    References:72
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025