Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 2, Pages 219–227
DOI: https://doi.org/10.4213/tmf6041
(Mi tmf6041)
 

This article is cited in 9 scientific papers (total in 9 papers)

Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: The Mermin "magic" square/pentagram

M. Sanigaa, M. Planatb, M. Minarovjecha

a Astronomical Institute, Slovak Academy of Sciences
b CNRS — Institut FEMTO-ST, Département LPMO
Full-text PDF (400 kB) Citations (9)
References:
Abstract: In 1993, Mermin gave surprisingly simple proofs of the Bell–Kochen–Specker (BKS) theorem in Hilbert spaces of dimensions four and eight respectively using what has since been called the Mermin–Peres "magic" square and the Mermin pentagram. The former is a $3\times 3$ array of nine observables commuting pairwise in each row and column and arranged such that their product properties contradict those of the assigned eigenvalues. The latter is a set of ten observables arranged in five groups of four lying along five edges of the pentagram and characterized by a similar contradiction. We establish a one-to-one correspondence between the operators of the Mermin–Peres square and the points of the projective line over the product ring $GF(2)\otimes GF(2)$. Under this map, the concept mutually commuting transforms into mutually distant, and the distinguishing character of the third column's observables has its counterpart in the distinguished properties of the coordinates of the corresponding points, whose entries are either both zero divisors or both units. The ten operators of the Mermin pentagram correspond to a specific subset of points of the line over $GF(2)[x]/\langle x^3-x\rangle$. But the situation in this case is more intricate because there are two different configurations that seem to serve our purpose equally well. The first one comprises the three distinguished points of the (sub)line over $GF(2)$, their three "Jacobson" counterparts, and the four points whose both coordinates are zero divisors. The other configuration features the neighborhood of the point $(1,0)$ (or, equivalently, that of $(0,1)$). We also mention some other ring lines that might be relevant to BKS proofs in higher dimensions.
Keywords: projective ring line, neighbor relation, distant relation, Mermin's square, Mermin's pentagram, quantum entanglement.
Received: 21.07.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 2, Pages 625–631
DOI: https://doi.org/10.1007/s11232-007-0049-5
Bibliographic databases:
Language: Russian
Citation: M. Saniga, M. Planat, M. Minarovjech, “Projective line over the finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: The Mermin "magic" square/pentagram”, TMF, 151:2 (2007), 219–227; Theoret. and Math. Phys., 151:2 (2007), 625–631
Citation in format AMSBIB
\Bibitem{SanPlaMin07}
\by M.~Saniga, M.~Planat, M.~Minarovjech
\paper Projective line over the~finite quotient ring $GF(2)[x]/\langle x^3-x\rangle$ and quantum entanglement: The~Mermin ``magic" square/pentagram
\jour TMF
\yr 2007
\vol 151
\issue 2
\pages 219--227
\mathnet{http://mi.mathnet.ru/tmf6041}
\crossref{https://doi.org/10.4213/tmf6041}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2334301}
\zmath{https://zbmath.org/?q=an:1139.81330}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..625S}
\elib{https://elibrary.ru/item.asp?id=9521583}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 2
\pages 625--631
\crossref{https://doi.org/10.1007/s11232-007-0049-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246615900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249034694}
Linking options:
  • https://www.mathnet.ru/eng/tmf6041
  • https://doi.org/10.4213/tmf6041
  • https://www.mathnet.ru/eng/tmf/v151/i2/p219
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:585
    Full-text PDF :211
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024