Abstract:
We compare properties of the crystal structure and of the quasicrystal model
of liquid. We show that if the Lennard-Jones potential is used to model
the properties of argon, then the temperature of the phase transition between
the densely packed face-centered and the body-centered cubic structure is very
close to the liquid–crystal transition temperature. Based on this, we
propose a model of the phase transition consisting in a change of just
the short-range order, which then leads to a change of the long-range order.
Citation:
É. A. Arinstein, “A model of the liquid–crystal phase transition and the quasicrystal model of liquid”, TMF, 151:1 (2007), 155–171; Theoret. and Math. Phys., 151:1 (2007), 571–585
\Bibitem{Ari07}
\by \'E.~A.~Arinstein
\paper A~model of the~liquid--crystal phase transition and the~quasicrystal model of liquid
\jour TMF
\yr 2007
\vol 151
\issue 1
\pages 155--171
\mathnet{http://mi.mathnet.ru/tmf6018}
\crossref{https://doi.org/10.4213/tmf6018}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347308}
\zmath{https://zbmath.org/?q=an:05169946}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..571A}
\elib{https://elibrary.ru/item.asp?id=9521578}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 1
\pages 571--585
\crossref{https://doi.org/10.1007/s11232-007-0043-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245809000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247199431}
Linking options:
https://www.mathnet.ru/eng/tmf6018
https://doi.org/10.4213/tmf6018
https://www.mathnet.ru/eng/tmf/v151/i1/p155
This publication is cited in the following 6 articles:
E. S. Brikov, Integral Methods in Science and Engineering, 2023, 67
E. A. Arinshtein, “Variational Principle in Statistical Physics”, Russ. J. Phys. Chem., 96:7 (2022), 1386
Cherkas N.L., Cherkas S.L., “Smeared Lattice Model as a Framework For Order to Disorder Transitions in 2D Systems”, Crystals, 8:7 (2018), 290
Nadezhda L. Cherkas, Sergey L. Cherkas, The 1st International Electronic Conference on Crystals, 2018, 1117
Arinshteyn E.A., “Variational Principle in the Theory of Partial Distribution Functions”, J Stat Phys, 144:4 (2011), 831–845
É. A. Arinstein, “Thermodynamic stability, critical points, and phase transitions in
the theory of partial distribution functions”, Theoret. and Math. Phys., 155:3 (2008), 949–958