Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 151, Number 1, Pages 120–137
DOI: https://doi.org/10.4213/tmf6015
(Mi tmf6015)
 

This article is cited in 22 scientific papers (total in 22 papers)

Fine-grained and coarse-grained entropy in problems of statistical mechanics

V. V. Kozlova, D. V. Treschevba

a Steklov Mathematical Institute, Russian Academy of Sciences
b M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider dynamical systems with a phase space $\Gamma$ that preserve a measure $\mu$. A partition of $\Gamma$ into parts of finite $\mu$-measure generates the coarse-grained entropy, a functional that is defined on the space of probability measures on $\Gamma$ and generalizes the usual (ordinary or fine-grained) Gibbs entropy. We study the approximation properties of the coarse-grained entropy under refinement of the partition and also the properties of the coarse-grained entropy as a function of time.
Keywords: invariant measure, Gibbs entropy, coarse-grained entropy.
Received: 24.07.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 151, Issue 1, Pages 539–555
DOI: https://doi.org/10.1007/s11232-007-0040-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Kozlov, D. V. Treschev, “Fine-grained and coarse-grained entropy in problems of statistical mechanics”, TMF, 151:1 (2007), 120–137; Theoret. and Math. Phys., 151:1 (2007), 539–555
Citation in format AMSBIB
\Bibitem{KozTre07}
\by V.~V.~Kozlov, D.~V.~Treschev
\paper Fine-grained and coarse-grained entropy in problems of statistical mechanics
\jour TMF
\yr 2007
\vol 151
\issue 1
\pages 120--137
\mathnet{http://mi.mathnet.ru/tmf6015}
\crossref{https://doi.org/10.4213/tmf6015}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2347306}
\zmath{https://zbmath.org/?q=an:1119.82005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...151..539K}
\elib{https://elibrary.ru/item.asp?id=9521575}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 151
\issue 1
\pages 539--555
\crossref{https://doi.org/10.1007/s11232-007-0040-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245809000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34247240445}
Linking options:
  • https://www.mathnet.ru/eng/tmf6015
  • https://doi.org/10.4213/tmf6015
  • https://www.mathnet.ru/eng/tmf/v151/i1/p120
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1348
    Full-text PDF :395
    References:90
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024