Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 3, Pages 473–497
DOI: https://doi.org/10.4213/tmf5991
(Mi tmf5991)
 

This article is cited in 20 scientific papers (total in 20 papers)

Wave-packet continuum discretization method for solving the three-body scattering problem

V. I. Kukulin, V. N. Pomerantsev, O. A. Rubtsova

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: We generalize the wave-packet continuum discretization method previously developed for the scattering problem to the three-body system. For each asymptotic channel, we construct a basis of three-body wave packets given by square-integrable functions. We show that the projections of the channel resolvents on the subspace of three-body wave packets are determined by diagonal matrices, whose eigenvalues we find explicitly. We express the amplitudes of $2\to 2$ processes explicitly in terms of "wave-packet" finite-dimensional projections of the full resolvent. To illustrate our formalism, we calculate the differential cross section of elastic deuteron scattering on a heavy nucleus above the three-body breakup threshold and the $s$-wave quartet $(n-d)$-scattering amplitude. The results of the calculations agree well with the results obtained by other methods. In terms of complexity, the proposed scheme for solving the three-body scattering problem is comparable to solving a similar problem for bound states.
Keywords: quantum scattering theory, few-body system, discretization of the continuum.
Received: 22.04.2005
Revised: 19.05.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 3, Pages 403–424
DOI: https://doi.org/10.1007/s11232-007-0030-3
Bibliographic databases:
Language: Russian
Citation: V. I. Kukulin, V. N. Pomerantsev, O. A. Rubtsova, “Wave-packet continuum discretization method for solving the three-body scattering problem”, TMF, 150:3 (2007), 473–497; Theoret. and Math. Phys., 150:3 (2007), 403–424
Citation in format AMSBIB
\Bibitem{KukPomRub07}
\by V.~I.~Kukulin, V.~N.~Pomerantsev, O.~A.~Rubtsova
\paper Wave-packet continuum discretization method for solving the~three-body
scattering problem
\jour TMF
\yr 2007
\vol 150
\issue 3
\pages 473--497
\mathnet{http://mi.mathnet.ru/tmf5991}
\crossref{https://doi.org/10.4213/tmf5991}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340737}
\zmath{https://zbmath.org/?q=an:1119.81399}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150..403K}
\elib{https://elibrary.ru/item.asp?id=9469536}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 3
\pages 403--424
\crossref{https://doi.org/10.1007/s11232-007-0030-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000245546400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33947372098}
Linking options:
  • https://www.mathnet.ru/eng/tmf5991
  • https://doi.org/10.4213/tmf5991
  • https://www.mathnet.ru/eng/tmf/v150/i3/p473
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :256
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024