Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 2, Pages 263–285
DOI: https://doi.org/10.4213/tmf5978
(Mi tmf5978)
 

This article is cited in 10 scientific papers (total in 10 papers)

Integrability of the Egorov systems of hydrodynamic type

M. V. Pavlov

P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: We present integrability criterion for the Egorov systems of hydrodynamic type. We find the general solution by the generalized hodograph method and give examples. We discuss a description of triorthogonal curvilinear coordinate systems from the standpoint of reciprocal transformations.
Keywords: Hamiltonian structure, reciprocal transformation, Egorov metric, system of hydrodynamic type, Riemann invariant, extended hodograph method, generalized hodograph method.
Received: 01.05.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 2, Pages 225–243
DOI: https://doi.org/10.1007/s11232-007-0017-0
Bibliographic databases:
Language: Russian
Citation: M. V. Pavlov, “Integrability of the Egorov systems of hydrodynamic type”, TMF, 150:2 (2007), 263–285; Theoret. and Math. Phys., 150:2 (2007), 225–243
Citation in format AMSBIB
\Bibitem{Pav07}
\by M.~V.~Pavlov
\paper Integrability of the~Egorov systems of hydrodynamic type
\jour TMF
\yr 2007
\vol 150
\issue 2
\pages 263--285
\mathnet{http://mi.mathnet.ru/tmf5978}
\crossref{https://doi.org/10.4213/tmf5978}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325928}
\zmath{https://zbmath.org/?q=an:1125.37049}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150..225P}
\elib{https://elibrary.ru/item.asp?id=13548404}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 2
\pages 225--243
\crossref{https://doi.org/10.1007/s11232-007-0017-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244406800007}
\elib{https://elibrary.ru/item.asp?id=13548404}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33847184289}
Linking options:
  • https://www.mathnet.ru/eng/tmf5978
  • https://doi.org/10.4213/tmf5978
  • https://www.mathnet.ru/eng/tmf/v150/i2/p263
  • This publication is cited in the following 10 articles:
    1. Maxim V. Pavlov, “Integrability of exceptional hydrodynamic-type systems”, Proc. Steklov Inst. Math., 302 (2018), 325–335  mathnet  crossref  crossref  isi  elib
    2. Prykarpatski A.K., “On the Solutions to the Witten-Dijkgraaf-Verlinde-Verlinde Associativity Equations and Their Algebraic Properties”, J. Geom. Phys., 134 (2018), 77–83  crossref  mathscinet  zmath  isi  scopus
    3. Cirilo-Lombardo D.J., “Integrable Hydrodynamic Equations For Initial Chiral Currents and Infinite Hydrodynamic Chains From WZNW Model and String Model of WZNW Type With Su(2), So(3), Sp(2), Su(Infinity), So(Infinity), Sp(Infinity) Constant Torsions”, Int. J. Mod. Phys. A, 29:24 (2014), 1450134  crossref  zmath  adsnasa  isi  scopus
    4. I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Math. Surveys, 66:1 (2011), 107–144  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    5. Handbook of Nonlinear Partial Differential Equations, Second Edition, 2011, 1795  crossref
    6. V. Rosenhaus, “Infinite conservation laws for differential systems”, Theoret. and Math. Phys., 160:1 (2009), 1042–1049  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    7. Yu-Tung Chen, Niann-Chern Lee, Ming-Hsien Tu, “The WDVV symmetries in two-primary models”, Theoret. and Math. Phys., 161:3 (2009), 1634–1646  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    8. Sergyeyev A., “Infinite hierarchies of nonlocal symmetries of the Chen-Kontsevich-Schwarz type for the oriented associativity equations”, J. Phys. A, 42:40 (2009), 404017, 15 pp.  crossref  mathscinet  zmath  isi  elib  scopus
    9. M. V. Neschadim, “Kasatelnye preobrazovaniya uravneniya Keli–Darbu”, Vestn. NGU. Ser. matem., mekh., inform., 9:1 (2009), 39–44  mathnet
    10. Victor D. Gershun, “Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n), SP(n) Groups”, SIGMA, 4 (2008), 041, 16 pp.  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:615
    Full-text PDF :303
    References:85
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025