Abstract:
We present integrability criterion for the Egorov systems of hydrodynamic
type. We find the general solution by the generalized hodograph method and
give examples. We discuss a description of triorthogonal curvilinear
coordinate systems from the standpoint of reciprocal transformations.
Keywords:
Hamiltonian structure, reciprocal transformation, Egorov metric, system of hydrodynamic type, Riemann invariant, extended hodograph method, generalized hodograph method.
Citation:
M. V. Pavlov, “Integrability of the Egorov systems of hydrodynamic type”, TMF, 150:2 (2007), 263–285; Theoret. and Math. Phys., 150:2 (2007), 225–243
\Bibitem{Pav07}
\by M.~V.~Pavlov
\paper Integrability of the~Egorov systems of hydrodynamic type
\jour TMF
\yr 2007
\vol 150
\issue 2
\pages 263--285
\mathnet{http://mi.mathnet.ru/tmf5978}
\crossref{https://doi.org/10.4213/tmf5978}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325928}
\zmath{https://zbmath.org/?q=an:1125.37049}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150..225P}
\elib{https://elibrary.ru/item.asp?id=13548404}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 2
\pages 225--243
\crossref{https://doi.org/10.1007/s11232-007-0017-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244406800007}
\elib{https://elibrary.ru/item.asp?id=13548404}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33847184289}
Linking options:
https://www.mathnet.ru/eng/tmf5978
https://doi.org/10.4213/tmf5978
https://www.mathnet.ru/eng/tmf/v150/i2/p263
This publication is cited in the following 10 articles:
Maxim V. Pavlov, “Integrability of exceptional hydrodynamic-type systems”, Proc. Steklov Inst. Math., 302 (2018), 325–335
Prykarpatski A.K., “On the Solutions to the Witten-Dijkgraaf-Verlinde-Verlinde Associativity Equations and Their Algebraic Properties”, J. Geom. Phys., 134 (2018), 77–83
Cirilo-Lombardo D.J., “Integrable Hydrodynamic Equations For Initial Chiral Currents and Infinite Hydrodynamic Chains From WZNW Model and String Model of WZNW Type With Su(2), So(3), Sp(2), Su(Infinity), So(Infinity), Sp(Infinity) Constant Torsions”, Int. J. Mod. Phys. A, 29:24 (2014), 1450134
I. A. Taimanov, “Singular spectral curves in finite-gap integration”, Russian Math. Surveys, 66:1 (2011), 107–144
Handbook of Nonlinear Partial Differential Equations, Second Edition, 2011, 1795
V. Rosenhaus, “Infinite conservation laws for differential systems”, Theoret. and Math. Phys., 160:1 (2009), 1042–1049
Yu-Tung Chen, Niann-Chern Lee, Ming-Hsien Tu, “The WDVV symmetries in two-primary models”, Theoret. and Math. Phys., 161:3 (2009), 1634–1646
Sergyeyev A., “Infinite hierarchies of nonlocal symmetries of the Chen-Kontsevich-Schwarz type for the oriented associativity equations”, J. Phys. A, 42:40 (2009), 404017, 15 pp.
M. V. Neschadim, “Kasatelnye preobrazovaniya uravneniya Keli–Darbu”, Vestn. NGU. Ser. matem., mekh., inform., 9:1 (2009), 39–44
Victor D. Gershun, “Integrable String Models in Terms of Chiral Invariants of SU(n), SO(n),
SP(n) Groups”, SIGMA, 4 (2008), 041, 16 pp.