Abstract:
We establish a relation between an exactly solvable boson model and plane
partitions, i.e., three-dimensional Young diagrams enclosed in a box of
finite size, which allows representing the partition generating functions as
correlation functions of an integrable model and deriving the MacMahon
formulas for enumerating partitions using the quantum inverse scattering
method.
Citation:
N. M. Bogolyubov, “Enumeration of plane partitions and the algebraic Bethe anzatz”, TMF, 150:2 (2007), 193–203; Theoret. and Math. Phys., 150:2 (2007), 165–174
This publication is cited in the following 15 articles:
Pozsgay B. Gombor T. Hutsalyuk A. Jiang Yu. Pristyak L. Vernier E., “Integrable Spin Chain With Hilbert Space Fragmentation and Solvable Real-Time Dynamics”, Phys. Rev. E, 104:4 (2021), 044106
Hutsalyuk A., Pozsgay B., “Integrability Breaking in the One-Dimensional Bose Gas: Atomic Losses and Energy Loss”, Phys. Rev. E, 103:4 (2021), 042121
Bogoliubov N., Malyshev C., “The Phase Model and the Norm-Trace Generating Function of Plane Partitions”, J. Stat. Mech.-Theory Exp., 2018, 083101
Zhou Ch.-Ch., Dai W.-Sh., “A Statistical Mechanical Approach to Restricted Integer Partition Functions”, J. Stat. Mech.-Theory Exp., 2018, 053111
Pozsgay B., Eisler V., “Real-time dynamics in a strongly interacting bosonic hopping model: global quenches and mapping to the XX chain”, J. Stat. Mech.-Theory Exp., 2016, 053107
N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Russian Math. Surveys, 70:5 (2015), 789–856
N. M. Bogolyubov, “Combinatorics of a strongly coupled boson system”, Theoret. and Math. Phys., 181:1 (2014), 1132–1144
A. Rovenchak, “Enumeration of plane partitions with a restricted number of parts”, Theoret. and Math. Phys., 181:2 (2014), 1428–1434
Pozsgay B., “Quantum Quenches and Generalized Gibbs Ensemble in a Bethe Ansatz Solvable Lattice Model of Interacting Bosons”, J. Stat. Mech.-Theory Exp., 2014, P10045
Bogoliubov N., Timonen J., “Correlation functions for a strongly coupled boson system and plane partitions”, Philos Trans R Soc Lond Ser A Math Phys Eng Sci, 369:1939 (2011), 1319–1333
Nikolay M. Bogolyubov, “Determinantal Representation of the Time-Dependent Stationary Correlation Function for the Totally Asymmetric Simple Exclusion Model”, SIGMA, 5 (2009), 052, 11 pp.
N. M. Bogolyubov, “Five vertex model with fixed boundary conditions”, St. Petersburg Math. J., 21:3 (2010), 407–421
N. M. Bogolyubov, “Four-vertex model and random tilings”, Theoret. and Math. Phys., 155:1 (2008), 523–535
J. Math. Sci. (N. Y.), 158:6 (2009), 771–786
N. M. Bogolyubov, “Four-vertex model”, J. Math. Sci. (N. Y.), 151:2 (2008), 2816–2828