Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 150, Number 1, Pages 143–151
DOI: https://doi.org/10.4213/tmf5970
(Mi tmf5970)
 

This article is cited in 11 scientific papers (total in 11 papers)

Isomonodromic deformations and "antiquantization" for the simplest ordinary differential equations

S. Yu. Slavyanova, F. R. Vukailovichb

a Saint-Petersburg State University
b Vinca Institute of Nuclear Sciences
References:
Abstract: We consider three different models of linear differential equations and their isomonodromic deformations. We show that each of the models has its own specificity, although all of them lead to the same final result. It turns out that isomonodromic deformations are closely related to the Hamiltonian structure of both classical mechanics and quantum mechanics.
Keywords: isomonodromic deformations, antiquantization, accessory parameter, inessential singularity.
Received: 29.08.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 150, Issue 1, Pages 123–131
DOI: https://doi.org/10.1007/s11232-007-0009-0
Bibliographic databases:
Language: Russian
Citation: S. Yu. Slavyanov, F. R. Vukailovich, “Isomonodromic deformations and "antiquantization" for the simplest ordinary differential equations”, TMF, 150:1 (2007), 143–151; Theoret. and Math. Phys., 150:1 (2007), 123–131
Citation in format AMSBIB
\Bibitem{SlaVuk07}
\by S.~Yu.~Slavyanov, F.~R.~Vukailovich
\paper Isomonodromic deformations and ``antiquantization" for the~simplest ordinary differential equations
\jour TMF
\yr 2007
\vol 150
\issue 1
\pages 143--151
\mathnet{http://mi.mathnet.ru/tmf5970}
\crossref{https://doi.org/10.4213/tmf5970}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2325870}
\zmath{https://zbmath.org/?q=an:1118.81026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...150..123S}
\elib{https://elibrary.ru/item.asp?id=9433556}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 150
\issue 1
\pages 123--131
\crossref{https://doi.org/10.1007/s11232-007-0009-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000244088700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846345676}
Linking options:
  • https://www.mathnet.ru/eng/tmf5970
  • https://doi.org/10.4213/tmf5970
  • https://www.mathnet.ru/eng/tmf/v150/i1/p143
  • This publication is cited in the following 11 articles:
    1. Slavyanov S., Stesik O., “Antiquantization as a Specific Way From the Statistical Physics to the Regular Physics”, Physica A, 521 (2019), 512–518  crossref  mathscinet  isi  scopus
    2. A. A. Salatich, S. Yu. Slavyanov, O. L. Stesik, “Sistemy ODU pervogo poryadka, porozhdayuschie konflyuentnye uravneniya Goina”, Teoriya predstavlenii, dinamicheskie sistemy, kombinatornye metody. XXXI, Zap. nauchn. sem. POMI, 485, POMI, SPb., 2019, 187–194  mathnet
    3. J. Math. Sci. (N. Y.), 209:6 (2015), 910–921  mathnet  crossref
    4. S. Yu. Slavyanov, “Antiquantization and the corresponding symmetries”, Theoret. and Math. Phys., 185:1 (2015), 1522–1526  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Slavyanov S.Y., “Relations Between Linear Equations and Painlevé'S Equations”, Constr. Approx., 39:1, SI (2014), 75–83  crossref  mathscinet  zmath  isi  scopus
    6. Slavyanov S.Yu., “Derivation of Painlevé equations by antiquantization”, Painleve Equations and Related Topics (2012), Degruyter Proceedings in Mathematics, eds. Bruno A., Batkhin A., Walter de Gruyter & Co, 2012, 253–256  mathscinet  isi
    7. A. Mylläri, S. Yu. Slavyanov, “Integrable dynamical systems generated by quantum models with an adiabatic parameter”, Theoret. and Math. Phys., 166:2 (2011), 224–227  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    8. S.Yu. Slavyanov, A.Ya. Kazakov, F. R. Vukajlović, “RELATIONS BETWEEN HEUN EQUATIONS AND PAINLEVE EQUATIONS”, Albanian J. Math., 4:4 (2010)  crossref
    9. M. V. Babich, “On canonical parametrization of the phase spaces of equations of isomonodromic deformations of Fuchsian systems of dimension 2×2. Derivation of the Painlevé VI equation”, Russian Math. Surveys, 64:1 (2009), 45–127  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. A. Ya. Kazakov, S. Yu. Slavyanov, “Euler integral symmetries for a deformed Heun equation and symmetries of the Painlevé PVI equation”, Theoret. and Math. Phys., 155:2 (2008), 722–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    11. B. I. Suleimanov, ““Quantizations” of the second Painlevé equation and the problem of the equivalence of its LA pairs”, Theoret. and Math. Phys., 156:3 (2008), 1280–1291  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:620
    Full-text PDF :278
    References:69
    First page:8
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025