Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 85, Number 3, Pages 349–367 (Mi tmf5954)  

This article is cited in 2 scientific papers (total in 2 papers)

Chaos and order in the multidimensional Frenkel–Kontorova model

M. L. Blank
References:
Abstract: A study is made of the properties of minimal solutions (minimals) of a multidimensional discrete periodic variational problem for which the space of parameters is $Z^d$ and the space of values $R^q$. A one-dimensional example of such a problem is the well-known Frenkel–Kontorova model. The concept introduced earlier for the case ($d\geqslant1$, $q=1$) of a self-consistent minimal is extended to the general case ($q>1$), and the concept of a weakly self-consistent minimal is introduced. It is shown that every self-consistent (respectively, weakly self-consistent) minimal is in a finite neighborhood of the graph of a linear (respectively, polylinear) function. For self-consistent minimals, the complete analog of the one-dimensional Aubry–Mather theory is constructed. For $q=1$ it is shown that all minimals are weakly self-consistent. For $q>1$ an example is constructed that demonstrates order–chaos bifurcation corresponding to the appearance of completely disordered families of minimals. The connection between this problem and Kolmogorov–Arnol'd–Moser (KAM) theory is discussed.
Received: 20.04.1990
English version:
Theoretical and Mathematical Physics, 1990, Volume 85, Issue 2, Pages 1255–1268
DOI: https://doi.org/10.1007/BF01018402
Bibliographic databases:
Language: Russian
Citation: M. L. Blank, “Chaos and order in the multidimensional Frenkel–Kontorova model”, TMF, 85:3 (1990), 349–367; Theoret. and Math. Phys., 85:2 (1990), 1255–1268
Citation in format AMSBIB
\Bibitem{Bla90}
\by M.~L.~Blank
\paper Chaos and order in~the multidimensional Frenkel--Kontorova model
\jour TMF
\yr 1990
\vol 85
\issue 3
\pages 349--367
\mathnet{http://mi.mathnet.ru/tmf5954}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1099131}
\zmath{https://zbmath.org/?q=an:0723.49032}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 2
\pages 1255--1268
\crossref{https://doi.org/10.1007/BF01018402}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FV76600002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5954
  • https://www.mathnet.ru/eng/tmf/v85/i3/p349
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024