Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 77, Number 2, Pages 163–170 (Mi tmf5944)  

This article is cited in 13 scientific papers (total in 14 papers)

Asymptotic behavior as t of the solution to the Cauchy problem for the Landau–Lifshitz equation

R. F. Bikbaev
References:
Abstract: The leading term in the t asymptotic behavior of the solution of the Cauchy problem for the Landau–Lifshitz equation is constructed in the case of “rapidly decreasing” initial data. The interaction of the oscillator background due to the continuum with soliton excitations is described.
Received: 13.02.1987
English version:
Theoretical and Mathematical Physics, 1988, Volume 77, Issue 2, Pages 1117–1226
DOI: https://doi.org/10.1007/BF01016377
Bibliographic databases:
Language: Russian
Citation: R. F. Bikbaev, “Asymptotic behavior as t of the solution to the Cauchy problem for the Landau–Lifshitz equation”, TMF, 77:2 (1988), 163–170; Theoret. and Math. Phys., 77:2 (1988), 1117–1226
Citation in format AMSBIB
\Bibitem{Bik88}
\by R.~F.~Bikbaev
\paper Asymptotic behavior as $t\to\infty$ of the solution to the Cauchy problem for the Landau--Lifshitz equation
\jour TMF
\yr 1988
\vol 77
\issue 2
\pages 163--170
\mathnet{http://mi.mathnet.ru/tmf5944}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=978185}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 77
\issue 2
\pages 1117--1226
\crossref{https://doi.org/10.1007/BF01016377}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988AD07000001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5944
  • https://www.mathnet.ru/eng/tmf/v77/i2/p163
  • This publication is cited in the following 14 articles:
    1. Hongyi Zhang, Yufeng Zhang, Binlu Feng, “Long-time asymptotics for a complex cubic Camassa–Holm equation”, Lett Math Phys, 114:3 (2024)  crossref
    2. Yiling Yang, Engui Fan, “Soliton resolution and large time behavior of solutions to the Cauchy problem for the Novikov equation with a nonzero background”, Advances in Mathematics, 426 (2023), 109088  crossref
    3. Yiling Yang, Engui Fan, “On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions”, Advances in Mathematics, 402 (2022), 108340  crossref
    4. Yiling Yang, Engui Fan, “Long-time Asymptotic Behavior for the Derivative Schrödinger Equation with Finite Density Type Initial Data”, Chin. Ann. Math. Ser. B, 43:6 (2022), 893  crossref
    5. Yiling Yang, Engui Fan, “Soliton resolution for the short-pulse equation”, Journal of Differential Equations, 280 (2021), 644  crossref
    6. Jian Xu, Engui Fan, “Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: Without solitons”, Journal of Differential Equations, 259:3 (2015), 1098  crossref
    7. A. V. Kitaev, A. H. Vartanian, “Asymptotics of Solutions to the Modified Nonlinear Schrödinger Equation: Solitons on a Nonvanishing Continuous Background”, SIAM J. Math. Anal., 30:4 (1999), 787  crossref
    8. A V Kitaev, A H Vartanian, “Leading-order temporal asymptotics of the modified nonlinear Schrödinger equation: solitonless sector”, Inverse Problems, 13:5 (1997), 1311  crossref
    9. A. I. Bobenko, A. M. Il'in, S. Yu. Dobrokhotov, A. R. Its, L. A. Kalyakin, V. B. Matveev, V. Yu. Novokshenov, A. B. Shabat, “Ramil' Faritovich Bikbaev (obituary)”, Russian Math. Surveys, 51:1 (1996), 129–133  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    10. R. F. Bikbaev, ““Domain walls” in the isotropic Heisenberg model”, Theoret. and Math. Phys., 95:1 (1993), 429–431  mathnet  crossref  mathscinet  zmath
    11. M Svendsen, H C Fogedby, “Phase shift analysis of the Landau-Lifshitz equation”, J. Phys. A: Math. Gen., 26:7 (1993), 1717  crossref
    12. V. P. Kotlyarov, “Influence of a double continuous spectrum of the Dirac operator on the asymptotic solitons of a nonlinear Schrödinger equation”, Math. Notes, 49:2 (1991), 172–180  mathnet  mathnet  crossref  isi
    13. R. F. Bikbaev, “Distribution of magnetization in an easy-plane ferromagnet”, Theoret. and Math. Phys., 80:3 (1989), 1004–1006  mathnet  crossref  mathscinet  isi
    14. R. F. Bikbaev, “Large-time asymptotics of the solution of the nonlinear Schrödinger equation with boundary conditions of step type”, Theoret. and Math. Phys., 81:1 (1989), 1011–1017  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:464
    Full-text PDF :109
    References:66
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025