Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 1, Pages 150–162
DOI: https://doi.org/10.4213/tmf593
(Mi tmf593)
 

This article is cited in 6 scientific papers (total in 6 papers)

Electrostatics in a locally flat space with conical singularities

Yu. V. Grats, A. A. Rossikhin

M. V. Lomonosov Moscow State University
Full-text PDF (234 kB) Citations (6)
References:
Abstract: We calculate the potential of a pointlike source in a multicenter three-dimensional space–time and obtain general relations between the values of the regularized self-energy, force, and force moment. The self-action effects as well as the relative contribution of higher multipoles infinitely increase as the angle deficit increases. The results obtained are generalized to a system of parallel cosmic strings one of which carries a current. The case of string with a finite thickness is also considered.
Received: 27.04.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 1, Pages 539–548
DOI: https://doi.org/10.1007/BF02551060
Bibliographic databases:
Language: Russian
Citation: Yu. V. Grats, A. A. Rossikhin, “Electrostatics in a locally flat space with conical singularities”, TMF, 123:1 (2000), 150–162; Theoret. and Math. Phys., 123:1 (2000), 539–548
Citation in format AMSBIB
\Bibitem{GraRos00}
\by Yu.~V.~Grats, A.~A.~Rossikhin
\paper Electrostatics in a locally flat space with conical singularities
\jour TMF
\yr 2000
\vol 123
\issue 1
\pages 150--162
\mathnet{http://mi.mathnet.ru/tmf593}
\crossref{https://doi.org/10.4213/tmf593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1773217}
\zmath{https://zbmath.org/?q=an:1031.81573}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 1
\pages 539--548
\crossref{https://doi.org/10.1007/BF02551060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000087532100013}
Linking options:
  • https://www.mathnet.ru/eng/tmf593
  • https://doi.org/10.4213/tmf593
  • https://www.mathnet.ru/eng/tmf/v123/i1/p150
  • This publication is cited in the following 6 articles:
    1. Khusnutdinov N., “Self-Action in Gravity”, Eur. Phys. J. Plus, 136:6 (2021), 669  crossref  isi
    2. Grats Yu.V. Spirin P., “Vacuum Polarization and Classical Self-Action Near Higher-Dimensional Defects”, Eur. Phys. J. C, 77:2 (2017), 101  crossref  isi  scopus  scopus  scopus
    3. Yu. V. Grats, “Vacuum interaction of conic singularities”, Theoret. and Math. Phys., 186:2 (2016), 205–212  mathnet  crossref  crossref  mathscinet  isi  elib
    4. Grats Yu.V., Spirin P.A., “Vacuum polarization in the field of a multidimensional global monopole”, J. Exp. Theor. Phys., 123:5 (2016), 807–813  crossref  isi  elib  scopus
    5. N. R. Khusnutdinov, “Particle self-action effects in a gravitational field”, Phys. Usp., 48:6 (2005), 577–593  mathnet  crossref  crossref  adsnasa  isi
    6. Grats, YV, “Chiral string in a curved space: Gravitational self-action”, Modern Physics Letters A, 16:11 (2001), 725  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :233
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025