Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 85, Number 1, Pages 32–40 (Mi tmf5928)  

This article is cited in 6 scientific papers (total in 6 papers)

Structure of spectrum edge for multidimensional Anderson model

L. N. Grenkova, S. A. Molchanov, Yu. N. Sudarev
Full-text PDF (703 kB) Citations (6)
References:
Abstract: The structure of the spectrum edge for the multidimensional Anderson model is studied. The limiting distribution of the $k$ highest eigenvalues is found.
Received: 12.03.1990
English version:
Theoretical and Mathematical Physics, 1990, Volume 85, Issue 1, Pages 1033–1039
DOI: https://doi.org/10.1007/BF01017244
Bibliographic databases:
Language: Russian
Citation: L. N. Grenkova, S. A. Molchanov, Yu. N. Sudarev, “Structure of spectrum edge for multidimensional Anderson model”, TMF, 85:1 (1990), 32–40; Theoret. and Math. Phys., 85:1 (1990), 1033–1039
Citation in format AMSBIB
\Bibitem{GreMolSud90}
\by L.~N.~Grenkova, S.~A.~Molchanov, Yu.~N.~Sudarev
\paper Structure of~spectrum edge for multidimensional Anderson model
\jour TMF
\yr 1990
\vol 85
\issue 1
\pages 32--40
\mathnet{http://mi.mathnet.ru/tmf5928}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1083950}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 85
\issue 1
\pages 1033--1039
\crossref{https://doi.org/10.1007/BF01017244}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FK88200004}
Linking options:
  • https://www.mathnet.ru/eng/tmf5928
  • https://www.mathnet.ru/eng/tmf/v85/i1/p32
  • This publication is cited in the following 6 articles:
    1. Chokri Manai, Simone Warzel, “Spectral Analysis of the Quantum Random Energy Model”, Commun. Math. Phys., 402:2 (2023), 1259  crossref
    2. Arvydas Astrauskas, “From extreme values of i.i.d. random fields to extreme eigenvalues of finite-volume Anderson Hamiltonian”, Probab. Surveys, 13:none (2016)  crossref
    3. A. Astrauskas, “Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. II. Distributions with Heavy Tails”, J Stat Phys, 146:1 (2012), 98  crossref
    4. A. Astrauskas, “Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. I. Asymptotic Expansion Formulas”, J Stat Phys, 131:5 (2008), 867  crossref
    5. A. Astrauskas, “Poisson-Type Limit Theorems for Eigenvalues of Finite-Volume Anderson Hamiltonians”, Acta Appl Math, 96:1-3 (2007), 3  crossref
    6. A. Astrauskas, S. A. Molchanov, “Limit theorems for basic states of the anderson model”, Funct. Anal. Appl., 26:4 (1992), 305–307  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :105
    References:56
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025