Abstract:
The structure of the spectrum edge for the multidimensional Anderson model is studied. The limiting distribution of the $k$ highest eigenvalues is found.
Citation:
L. N. Grenkova, S. A. Molchanov, Yu. N. Sudarev, “Structure of spectrum edge for multidimensional Anderson model”, TMF, 85:1 (1990), 32–40; Theoret. and Math. Phys., 85:1 (1990), 1033–1039
This publication is cited in the following 6 articles:
Chokri Manai, Simone Warzel, “Spectral Analysis of the Quantum Random Energy Model”, Commun. Math. Phys., 402:2 (2023), 1259
Arvydas Astrauskas, “From extreme values of i.i.d. random fields to extreme eigenvalues of finite-volume Anderson Hamiltonian”, Probab. Surveys, 13:none (2016)
A. Astrauskas, “Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. II. Distributions with Heavy Tails”, J Stat Phys, 146:1 (2012), 98
A. Astrauskas, “Extremal Theory for Spectrum of Random Discrete Schrödinger Operator. I. Asymptotic Expansion Formulas”, J Stat Phys, 131:5 (2008), 867
A. Astrauskas, “Poisson-Type Limit Theorems for Eigenvalues of Finite-Volume Anderson Hamiltonians”, Acta Appl Math, 96:1-3 (2007), 3
A. Astrauskas, S. A. Molchanov, “Limit theorems for basic states of the anderson model”, Funct. Anal. Appl., 26:4 (1992), 305–307