Abstract:
The arbitrariness of the choice of the propagator of the Yang–Mills field in the Hamiltonian gauge is considered. Transition from the Coulomb to the Hamiltonian gauge yields a class of propagators that includes both a translationally noninvariant propagator as well as one of the Mandelstam–Leibbrandt type.
Citation:
G. A. Kravtsova, A. A. Slavnov, “Propagator of Yang–Mills field in Hamiltonian Gauge”, TMF, 89:2 (1991), 238–245; Theoret. and Math. Phys., 89:2 (1991), 1181–1187
\Bibitem{KraSla91}
\by G.~A.~Kravtsova, A.~A.~Slavnov
\paper Propagator of Yang--Mills field in Hamiltonian Gauge
\jour TMF
\yr 1991
\vol 89
\issue 2
\pages 238--245
\mathnet{http://mi.mathnet.ru/tmf5891}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1151384}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 89
\issue 2
\pages 1181--1187
\crossref{https://doi.org/10.1007/BF01015911}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HV82200008}
Linking options:
https://www.mathnet.ru/eng/tmf5891
https://www.mathnet.ru/eng/tmf/v89/i2/p238
This publication is cited in the following 4 articles:
M. Poljšak, “The eikonal approximation and perturbative QCD in the temporal gauge”, Physics Letters B, 388:4 (1996), 813
G. A. Kravtsova, “Some regularizations of the temporal gauge and propagator of the Yang–Mills field”, Theoret. and Math. Phys., 94:3 (1993), 287–293
G. A. Kravtsova, A. A. Slavnov, “On the problem of non-local counterterms for Yang–Mills theory in temporal-like and light-cone gauges”, Theoret. and Math. Phys., 96:2 (1993), 982–988
S. C. Lim, “Time-translation noninvariance of the propagator in theA0=0 gauge”, Phys. Rev. D, 48:6 (1993), 2957