Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 89, Number 2, Pages 190–204 (Mi tmf5886)  

This article is cited in 130 scientific papers (total in 130 papers)

“Hidden symmetry” of Askey–Wilson polynomials

A. S. Zhedanov
References:
Abstract: A new $q$-commutator Lie algebra with three generators, $AW(3)$, is considered, and its finite-dimensional representations are investigated. The overlap functions between the two dual bases in this algebra are expressed in terms of Askey–Wilson polynomials of general form of a discrete argument: to the four parameters of the polynomials there correspond four independent structure parameters of the algebra. Special and degenerate cases of the algebra $AW(3)$ that generate all the classical polynomials of discrete arguments – Racah, Hahn, etc., – are considered. Examples of realization of the algebra $AW(3)$ in terms of the generators of the quantum algebras of $SU(2)$ and the $q$-oscillator are given. It is conjectured that the algebra $AW(3)$ is a dynamical symmetry algebra in all problems in which $q$-polynomials arise as eigenfunctions.
Received: 14.01.1991
English version:
Theoretical and Mathematical Physics, 1991, Volume 89, Issue 2, Pages 1146–1157
DOI: https://doi.org/10.1007/BF01015906
Bibliographic databases:
Language: Russian
Citation: A. S. Zhedanov, ““Hidden symmetry” of Askey–Wilson polynomials”, TMF, 89:2 (1991), 190–204; Theoret. and Math. Phys., 89:2 (1991), 1146–1157
Citation in format AMSBIB
\Bibitem{Zhe91}
\by A.~S.~Zhedanov
\paper ``Hidden symmetry'' of Askey--Wilson polynomials
\jour TMF
\yr 1991
\vol 89
\issue 2
\pages 190--204
\mathnet{http://mi.mathnet.ru/tmf5886}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1151381}
\zmath{https://zbmath.org/?q=an:0782.33012|0744.33009}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 89
\issue 2
\pages 1146--1157
\crossref{https://doi.org/10.1007/BF01015906}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HV82200003}
Linking options:
  • https://www.mathnet.ru/eng/tmf5886
  • https://www.mathnet.ru/eng/tmf/v89/i2/p190
  • This publication is cited in the following 130 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025