Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 84, Number 1, Pages 38–45 (Mi tmf5859)  

This article is cited in 10 scientific papers (total in 10 papers)

Elliptic solutions of nonlinear equations

I. A. Taimanov
References:
Abstract: A method is described for constructing algebraic curves whose theta functions reduce to one-dimensional functions. This makes it possible to construct finite-gap solutions of nonlinear equations expressed in terms of the elliptic functions. Elliptic two-gap potentials of the Schrödinger operator different from the Lamé and Verdier potentials are constructed.
Received: 18.07.1989
English version:
Theoretical and Mathematical Physics, 1990, Volume 84, Issue 1, Pages 700–706
DOI: https://doi.org/10.1007/BF01017194
Bibliographic databases:
Language: Russian
Citation: I. A. Taimanov, “Elliptic solutions of nonlinear equations”, TMF, 84:1 (1990), 38–45; Theoret. and Math. Phys., 84:1 (1990), 700–706
Citation in format AMSBIB
\Bibitem{Tai90}
\by I.~A.~Taimanov
\paper Elliptic solutions of~nonlinear equations
\jour TMF
\yr 1990
\vol 84
\issue 1
\pages 38--45
\mathnet{http://mi.mathnet.ru/tmf5859}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1070345}
\zmath{https://zbmath.org/?q=an:0760.35021}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 84
\issue 1
\pages 700--706
\crossref{https://doi.org/10.1007/BF01017194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990FA15100004}
Linking options:
  • https://www.mathnet.ru/eng/tmf5859
  • https://www.mathnet.ru/eng/tmf/v84/i1/p38
  • This publication is cited in the following 10 articles:
    1. B. T. Saparbaeva, “Two-Dimensional Finite-Gap Schrödinger Operators with Elliptic Coefficients”, Math. Notes, 747–749  mathnet  crossref  crossref  mathscinet  elib
    2. Fritz Gesztesy, Karl Unterkofler, Rudi Weikard, “An explicit characterization of Calogero–Moser systems”, Trans. Amer. Math. Soc., 358:2 (2005), 603  crossref
    3. Gesztesy, F, “Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - An analytic approach”, Bulletin of the American Mathematical Society, 35:4 (1998), 271  crossref  mathscinet  zmath  isi
    4. Fritz Gesztesy, Rudi Weikard, “A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy”, Acta Math., 181:1 (1998), 63  crossref
    5. A. O. Smirnov, “Elliptic in t solutions of the nonlinear Schrödinger equation”, Theoret. and Math. Phys., 107:2 (1996), 568–578  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Fritz Gesztesy, Rudi Weikard, “Picard potentials and Hill's equation on a torus”, Acta Math., 176:1 (1996), 73  crossref
    7. A. O. Smirnov, “Two-gap elliptic solutions to integrable nonlinear equations”, Math. Notes, 58:1 (1995), 735–743  mathnet  crossref  mathscinet  zmath  isi
    8. F. Gesztesy, R. Weikard, “Treibich-Verdier potentials and the stationary (m)KDV hierarchy”, Math Z, 219:1 (1995), 451  crossref
    9. A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 461–470  mathnet  crossref  mathscinet  zmath  isi
    10. A. O. Smirnov, “Solutions of the KdV equation elliptic in t”, Theoret. and Math. Phys., 100:2 (1994), 937–947  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:648
    Full-text PDF :200
    References:100
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025