Abstract:
Two models with band spectrum are considered: a one-dimensional lattice
model based on the theory of extensions and a one-dimensional Schrödinger
equation with periodic potential (Hill's equation). Relationships are obtained between the Bloch functions (Floquet solutions), the dispersion, and the effective masses at the edges of the spectral bands, on the one hand, the parameters of the models, on the other.
Citation:
B. S. Pavlov, S. V. Frolov, “Spectral identities for band spectrum in one-dimensional case”, TMF, 89:1 (1991), 3–10; Theoret. and Math. Phys., 89:1 (1991), 1013–1019
\Bibitem{PavFro91}
\by B.~S.~Pavlov, S.~V.~Frolov
\paper Spectral identities for band spectrum in one-dimensional case
\jour TMF
\yr 1991
\vol 89
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/tmf5841}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1151365}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 89
\issue 1
\pages 1013--1019
\crossref{https://doi.org/10.1007/BF01016800}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HT16100001}
Linking options:
https://www.mathnet.ru/eng/tmf5841
https://www.mathnet.ru/eng/tmf/v89/i1/p3
This publication is cited in the following 2 articles:
S. V. Frolov, “A spectral identity for the multidimensional Schrödinger equation with periodic potential”, Theoret. and Math. Phys., 91:3 (1992), 692–695
S. V. Frolov, “Multidimensional leray residues and effective masses of a lattice model”, Theoret. and Math. Phys., 89:1 (1991), 1123–1126