Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 88, Number 2, Pages 314–319 (Mi tmf5813)  

Solution of Bloch equation in the Weyl representation

V. V. Kudryashov
References:
Abstract: The Weyl symbol of the operator exponential $\exp\{-\beta[(2\mu)^{-1}\hat{p^2}+V\hat{(q)}]\}$ is regarded as a solution of the Bloch equation in the phase space. The unperturbed equation is separated in accordance with the $\hbar$ expansion of the product of Weyl symbols. The exact solution and Green's function of the unperturbed Bloch equation are found in analytic form. An iterative procedure for constructing the perturbation-theory series is proposed.
Received: 25.01.1991
English version:
Theoretical and Mathematical Physics, 1991, Volume 88, Issue 2, Pages 896–899
DOI: https://doi.org/10.1007/BF01019116
Bibliographic databases:
Language: Russian
Citation: V. V. Kudryashov, “Solution of Bloch equation in the Weyl representation”, TMF, 88:2 (1991), 314–319; Theoret. and Math. Phys., 88:2 (1991), 896–899
Citation in format AMSBIB
\Bibitem{Kud91}
\by V.~V.~Kudryashov
\paper Solution of Bloch equation in the Weyl representation
\jour TMF
\yr 1991
\vol 88
\issue 2
\pages 314--319
\mathnet{http://mi.mathnet.ru/tmf5813}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1137946}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 88
\issue 2
\pages 896--899
\crossref{https://doi.org/10.1007/BF01019116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HK96400010}
Linking options:
  • https://www.mathnet.ru/eng/tmf5813
  • https://www.mathnet.ru/eng/tmf/v88/i2/p314
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:721
    Full-text PDF :274
    References:88
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024