Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 83, Number 2, Pages 197–206 (Mi tmf5791)  

This article is cited in 11 scientific papers (total in 11 papers)

On a generalization of the gauge principle at high energies

V. G. Kadyshevskii, D. V. Fursaev
References:
Abstract: A model of a Euclidean gauge theory that describes a system of interacting scalar and vector fields and is based on a more general concept of the field itself in the region of high energies is constructed. A key part is played by the Lobachevskii momentum 4-space with radius of curvature $M$, this parameter $M$ being interpreted as a new physical constant (“fundamental mass”). Expansion with respect to unitary representations of the group of motions of the Lobachevskii $p$ space plays the part of Fourier transformation. After transition to the corresponding new configuration representation, the basic equations of the theory become differential–difference equations with a step of order $M$. In this representation local gauge transformations of the matter and vector fields are defined. Because the theory contains the “fundamental mass” $M$, the law of the gauge transformation of the vector field is modified significantly and appears as a combination of standard Yang–Mills transformations and gauge transformations characteristic of the theory of a vector field on a lattice. However, this last does not break the Euclidean $0(4)$ invariance of the model. In the low-energy approximation ($M\to\infty$) the theory is equivalent to the standard theory.
Received: 06.04.1989
English version:
Theoretical and Mathematical Physics, 1990, Volume 83, Issue 2, Pages 474–481
DOI: https://doi.org/10.1007/BF01260943
Bibliographic databases:
Language: Russian
Citation: V. G. Kadyshevskii, D. V. Fursaev, “On a generalization of the gauge principle at high energies”, TMF, 83:2 (1990), 197–206; Theoret. and Math. Phys., 83:2 (1990), 474–481
Citation in format AMSBIB
\Bibitem{KadFur90}
\by V.~G.~Kadyshevskii, D.~V.~Fursaev
\paper On~a~generalization of~the gauge principle at~high energies
\jour TMF
\yr 1990
\vol 83
\issue 2
\pages 197--206
\mathnet{http://mi.mathnet.ru/tmf5791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1062860}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 83
\issue 2
\pages 474--481
\crossref{https://doi.org/10.1007/BF01260943}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EM88200004}
Linking options:
  • https://www.mathnet.ru/eng/tmf5791
  • https://www.mathnet.ru/eng/tmf/v83/i2/p197
  • This publication is cited in the following 11 articles:
    1. K Nozari, M A Gorji, V Hosseinzadeh, B Vakili, “Natural cutoffs via compact symplectic manifolds”, Class. Quantum Grav., 33:2 (2016), 025009  crossref
    2. M A Gorji, V Hosseinzadeh, K Nozari, B Vakili, “Photon gas thermodynamics in dS and AdS momentum spaces”, J. Stat. Mech., 2016:7 (2016), 073107  crossref
    3. V. Hosseinzadeh, M. A. Gorji, K. Nozari, B. Vakili, “Noncommutative spaces and covariant formulation of statistical mechanics”, Phys. Rev. D, 92:2 (2015)  crossref
    4. K. Nozari, M. Khodadi, M. A. Gorji, “Bounds on quantum gravity parameter from the SU (2) NJL effective model of QCD”, EPL, 112:6 (2015), 60003  crossref
    5. R. Vilela Mendes, “The deformation-stability fundamental length and deviations from c”, Physics Letters A, 376:23 (2012), 1823  crossref
    6. R. Vilela Mendes, “A laboratory scale fundamental time?”, Eur. Phys. J. C, 72:11 (2012)  crossref
    7. R. VilelaMendes, “Some consequences of a non-commutative space-time structure”, Eur. Phys. J. C, 42:4 (2005), 445  crossref
    8. V. G. Kadyshevskii, G. A. Kravtsova, A. M. Mandel', V. N. Rodionov, “Threshold Phenomena in Intense Electromagnetic Fields”, Theoret. and Math. Phys., 134:2 (2003), 198–211  mathnet  crossref  crossref  isi
    9. Mir-Kasimov, RM, “Holomorphic realization of non-commutative space-time and gauge invariance”, Group 24 : Physical and Mathematical Aspects of Symmetries, 173 (2003), 283  isi
    10. R. Vilela Mendes, “Geometry, stochastic calculus, and quantum fields in a noncommutative space–time”, Journal of Mathematical Physics, 41:1 (2000), 156  crossref
    11. R V Mendes, “Deformations, stable theories and fundamental constants”, J. Phys. A: Math. Gen., 27:24 (1994), 8091  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :111
    References:61
    First page:3
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025