Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 83, Number 2, Pages 197–206 (Mi tmf5791)  

This article is cited in 11 scientific papers (total in 11 papers)

On a generalization of the gauge principle at high energies

V. G. Kadyshevskii, D. V. Fursaev
References:
Abstract: A model of a Euclidean gauge theory that describes a system of interacting scalar and vector fields and is based on a more general concept of the field itself in the region of high energies is constructed. A key part is played by the Lobachevskii momentum 4-space with radius of curvature MM, this parameter MM being interpreted as a new physical constant (“fundamental mass”). Expansion with respect to unitary representations of the group of motions of the Lobachevskii pp space plays the part of Fourier transformation. After transition to the corresponding new configuration representation, the basic equations of the theory become differential–difference equations with a step of order MM. In this representation local gauge transformations of the matter and vector fields are defined. Because the theory contains the “fundamental mass” MM, the law of the gauge transformation of the vector field is modified significantly and appears as a combination of standard Yang–Mills transformations and gauge transformations characteristic of the theory of a vector field on a lattice. However, this last does not break the Euclidean 0(4)0(4) invariance of the model. In the low-energy approximation (MM) the theory is equivalent to the standard theory.
Received: 06.04.1989
English version:
Theoretical and Mathematical Physics, 1990, Volume 83, Issue 2, Pages 474–481
DOI: https://doi.org/10.1007/BF01260943
Bibliographic databases:
Language: Russian
Citation: V. G. Kadyshevskii, D. V. Fursaev, “On a generalization of the gauge principle at high energies”, TMF, 83:2 (1990), 197–206; Theoret. and Math. Phys., 83:2 (1990), 474–481
Citation in format AMSBIB
\Bibitem{KadFur90}
\by V.~G.~Kadyshevskii, D.~V.~Fursaev
\paper On~a~generalization of~the gauge principle at~high energies
\jour TMF
\yr 1990
\vol 83
\issue 2
\pages 197--206
\mathnet{http://mi.mathnet.ru/tmf5791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1062860}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 83
\issue 2
\pages 474--481
\crossref{https://doi.org/10.1007/BF01260943}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EM88200004}
Linking options:
  • https://www.mathnet.ru/eng/tmf5791
  • https://www.mathnet.ru/eng/tmf/v83/i2/p197
  • This publication is cited in the following 11 articles:
    1. K Nozari, M A Gorji, V Hosseinzadeh, B Vakili, “Natural cutoffs via compact symplectic manifolds”, Class. Quantum Grav., 33:2 (2016), 025009  crossref
    2. M A Gorji, V Hosseinzadeh, K Nozari, B Vakili, “Photon gas thermodynamics in dS and AdS momentum spaces”, J. Stat. Mech., 2016:7 (2016), 073107  crossref
    3. V. Hosseinzadeh, M. A. Gorji, K. Nozari, B. Vakili, “Noncommutative spaces and covariant formulation of statistical mechanics”, Phys. Rev. D, 92:2 (2015)  crossref
    4. K. Nozari, M. Khodadi, M. A. Gorji, “Bounds on quantum gravity parameter from the SU (2) NJL effective model of QCD”, EPL, 112:6 (2015), 60003  crossref
    5. R. Vilela Mendes, “The deformation-stability fundamental length and deviations from c”, Physics Letters A, 376:23 (2012), 1823  crossref
    6. R. Vilela Mendes, “A laboratory scale fundamental time?”, Eur. Phys. J. C, 72:11 (2012)  crossref
    7. R. VilelaMendes, “Some consequences of a non-commutative space-time structure”, Eur. Phys. J. C, 42:4 (2005), 445  crossref
    8. V. G. Kadyshevskii, G. A. Kravtsova, A. M. Mandel', V. N. Rodionov, “Threshold Phenomena in Intense Electromagnetic Fields”, Theoret. and Math. Phys., 134:2 (2003), 198–211  mathnet  crossref  crossref  isi
    9. Mir-Kasimov, RM, “Holomorphic realization of non-commutative space-time and gauge invariance”, Group 24 : Physical and Mathematical Aspects of Symmetries, 173 (2003), 283  isi
    10. R. Vilela Mendes, “Geometry, stochastic calculus, and quantum fields in a noncommutative space–time”, Journal of Mathematical Physics, 41:1 (2000), 156  crossref
    11. R V Mendes, “Deformations, stable theories and fundamental constants”, J. Phys. A: Math. Gen., 27:24 (1994), 8091  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :111
    References:61
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025