Abstract:
The existence of the Boltzmann–Grad limit is proved for the solutions of the Bogolyubov equations for a system of an infinite number of particles that interact as hard spheres.
Citation:
V. I. Gerasimenko, D. Ya. Petrina, “Existence of the Boltzmann–Grad limit for an infinite system of hard spheres”, TMF, 83:1 (1990), 92–114; Theoret. and Math. Phys., 83:1 (1990), 402–418
This publication is cited in the following 6 articles:
V. Gerasimenko, I. Gapyak, “Non-perturbative solutions of hierarchies of evolution equations for colliding particles”, AIP Advances, 14:12 (2024)
D. Ya. Petrina, K. D. Petrina, “Stochastic dynamics and Boltzmann hierarchy. II”, Ukr Math J, 50:3 (1998), 425
D. Ya. Petrina, K. D. Petrina, “Stochastic dynamics and Boltzmann hierarchy. I”, Ukr Math J, 50:2 (1998), 224
D. Ya Petrina, K. D. Petrina, “Stochastic dynamics and Boltzmann hierarchy. III”, Ukr Math J, 50:4 (1998), 626
D. Ya. Petrina, E. D. Petrina, “Existence of equilibrium states of systems of hard spheres in the Boltzmann-Enskog limit within the frame work of the grand canonical ensemble”, Ukr Math J, 49:1 (1997), 124
V. I. Gerasimenko, “Solutions of Bogolyubov equations for one-dimensional system of hard spheres”, Theoret. and Math. Phys., 91:1 (1992), 410–417