Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 93, Number 1, Pages 39–48 (Mi tmf5732)  

This article is cited in 6 scientific papers (total in 6 papers)

Kink asymptotics of the perturbed sine-Gordon equation

O. M. Kiselev

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
Full-text PDF (894 kB) Citations (6)
References:
Abstract: The leading term and the first correction to the solution of the Goursat problem for the perturbed sine-Gordon equation are constructed at times of the order of the inverse of the perturbation parameter. The equation for the modulation of the first correction in the continuous spectrum is obtained.
Received: 16.01.1992
English version:
Theoretical and Mathematical Physics, 1992, Volume 93, Issue 1, Pages 1106–1111
DOI: https://doi.org/10.1007/BF01016468
Bibliographic databases:
Language: Russian
Citation: O. M. Kiselev, “Kink asymptotics of the perturbed sine-Gordon equation”, TMF, 93:1 (1992), 39–48; Theoret. and Math. Phys., 93:1 (1992), 1106–1111
Citation in format AMSBIB
\Bibitem{Kis92}
\by O.~M.~Kiselev
\paper Kink asymptotics of the perturbed sine-Gordon equation
\jour TMF
\yr 1992
\vol 93
\issue 1
\pages 39--48
\mathnet{http://mi.mathnet.ru/tmf5732}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1226209}
\zmath{https://zbmath.org/?q=an:0796.35145}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 93
\issue 1
\pages 1106--1111
\crossref{https://doi.org/10.1007/BF01016468}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LF86000004}
Linking options:
  • https://www.mathnet.ru/eng/tmf5732
  • https://www.mathnet.ru/eng/tmf/v93/i1/p39
  • This publication is cited in the following 6 articles:
    1. Oleg M. Kiselev, “Integral Formulas for the Painlevé-2 Transcendent”, Regul. Chaotic Dyn., 29:6 (2024), 838–852  mathnet  crossref
    2. O. M. Kiselev, “Higher-dimensional nonlinear integrable equations: asymptotics of solutions and perturbations”, J Math Sci, 125:5 (2005), 689  crossref
    3. O. M. Kiselev, “Asymptotics of solutions of higher-dimensional integrable equations and their perturbations”, Journal of Mathematical Sciences, 138:6 (2006), 6067–6230  mathnet  crossref  mathscinet  zmath  elib
    4. Kiselev, OM, “Perturbation theory for the Dirac equation in two-dimensional space”, Journal of Mathematical Physics, 39:4 (1998), 2333  crossref  mathscinet  zmath  adsnasa  isi
    5. R. R. Gadyl'shin, O. M. Kiselev, “On nonsolution structure of scattering data under perturbation of two-dimensional soliton for Davey–Stewartson equation II”, Theoret. and Math. Phys., 106:2 (1996), 167–173  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. L. A. Kalyakin, “On the problem of first correction in soliton perturbation theory”, Sb. Math., 186:7 (1995), 977–1002  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :131
    References:58
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025