Abstract:
It is shown that the Jacobi algebra QJ(3)QJ(3) generates potentials that admit exact solution in relativistic and nonrelativistic quantum mechanics. Being a spectrum-generatingdynamic symmetry algebra and possessing the ladder property, QJ(3)QJ(3) makes it possible to find the wave functions in the coordinate representation. The exactly solvable potentials specified in explicit form are regarded as a special case of a larger class of exactly solvable potentials specified implicitly. The connection between classical and quantum problems possessing exact solutions is obtained by means of QJ(3)QJ(3).
\Bibitem{Lut92}
\by I.~M.~Lutsenko
\paper Jacobi algebra and potentials generated by it
\jour TMF
\yr 1992
\vol 93
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/tmf5725}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1226206}
\zmath{https://zbmath.org/?q=an:0803.46085}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 93
\issue 1
\pages 1081--1090
\crossref{https://doi.org/10.1007/BF01016465}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992LF86000001}
Linking options:
https://www.mathnet.ru/eng/tmf5725
https://www.mathnet.ru/eng/tmf/v93/i1/p3
This publication is cited in the following 5 articles:
Shakir. M. Nagiyev, C. Aydin, A. I. Ahmadov, Sh. A. Amirova, “Exactly solvable model of the linear harmonic oscillator with a position-dependent mass under external homogeneous gravitational field”, Eur. Phys. J. Plus, 137:5 (2022)
A. N. Lavrenov, I. A. Lavrenov, “Howe duality of Higgs – Hahn algebra for 8D harmonic oscillator”, Vescì Akademìì navuk Belarusì. Seryâ fizika-matematyčnyh navuk, 55:2 (2019), 216
A.V. Shapovalov, I.V. Shirokov, “Functional Algebras and Dimensional Reduction in the LPDEs Integration Problem”, JNMP, 4:1-2 (1997), 62
A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration method for linear partial differential equations. Functional algebras and dimensional reduction”, Theoret. and Math. Phys., 106:1 (1996), 1–10
A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104:2 (1995), 921–934