Abstract:
The nonequal-time current correlation function in a one-dimensional Bose gas is calculated in the first order of perturbation theory. It is shown that the form factor of the particle number operator is proportional to a fractional power of the gas volume.
Citation:
N. A. Slavnov, “Nonequal-time current correlation function in a one-dimensional Bose gas”, TMF, 82:3 (1990), 389–401; Theoret. and Math. Phys., 82:3 (1990), 273–282
\Bibitem{Sla90}
\by N.~A.~Slavnov
\paper Nonequal-time current correlation function in~a~one-dimensional Bose gas
\jour TMF
\yr 1990
\vol 82
\issue 3
\pages 389--401
\mathnet{http://mi.mathnet.ru/tmf5718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1050288}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 82
\issue 3
\pages 273--282
\crossref{https://doi.org/10.1007/BF01029221}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EB42600007}
Linking options:
https://www.mathnet.ru/eng/tmf5718
https://www.mathnet.ru/eng/tmf/v82/i3/p389
This publication is cited in the following 97 articles:
Frank Göhmann, Encyclopedia of Mathematical Physics, 2025, 38
Song Cheng, Yang-Yang Chen, Xi-Wen Guan, Wen-Li Yang, Hai-Qing Lin, “One-body dynamical correlation function of the Lieb-Liniger model at finite temperature”, Phys. Rev. A, 111:1 (2025)
Albertus J. J. M. de Klerk, Jean-Sébastien Caux, “Improved Hilbert space exploration algorithms for finite temperature calculations”, SciPost Phys. Core, 6:2 (2023)
Frank Göhmann, Karol K Kozlowski, Mikhail D Minin, “Thermal form-factor expansion of the dynamical two-point functions of local operators in integrable quantum chains”, J. Phys. A: Math. Theor., 56:47 (2023), 475003
S.I. Mistakidis, A.G. Volosniev, R.E. Barfknecht, T. Fogarty, Th. Busch, A. Foerster, P. Schmelcher, N.T. Zinner, “Few-body Bose gases in low dimensions—A laboratory for quantum dynamics”, Physics Reports, 1042 (2023), 1
Kayo Kinjo, Jun Sato, Tetsuo Deguchi, “Dynamics of quantum double dark-solitons and an exact finite-size scaling of Bose–Einstein condensation”, J. Phys. A: Math. Theor., 56:16 (2023), 164001
De Nardis J. Doyon B. Medenjak M. Panfil M., “Correlation Functions and Transport Coefficients in Generalised Hydrodynamics”, J. Stat. Mech.-Theory Exp., 2022:1 (2022), 014002
Yuki Ishiguro, Jun Sato, Takahiro Ezaki, Katsuhiro Nishinari, “Constructing quantum dark solitons with stable scattering properties”, Phys. Rev. Research, 4:3 (2022)
Etienne Granet, Henrik Dreyer, Fabian Essler, “Out-of-equilibrium dynamics of the XY spin chain from form factor expansion”, SciPost Phys., 12:1 (2022)
Cubero A.C. Yoshimura T. Spohn H., “Form Factors and Generalized Hydrodynamics For Integrable Systems”, J. Stat. Mech.-Theory Exp., 2021:11 (2021), 114002
Karol K. Kozlowski, “On singularities of dynamic response functions in the massless regime of the XXZ spin-1/2 chain”, Journal of Mathematical Physics, 62:6 (2021)
Eldad Bettelheim, “Exact matrix elements of the field operator in the thermodynamic limit of the Lieb–Liniger model”, J. Phys. A: Math. Theor., 54:38 (2021), 385002
A. Hutsalyuk, B. Pozsgay, L. Pristyák, “The LeClair-Mussardo series and nested Bethe Ansatz”, Nuclear Physics B, 964 (2021), 115306
Constantin Babenko, Frank Göhmann, Karol K. Kozlowski, Junji Suzuki, “A thermal form factor series for the longitudinal two-point function of the Heisenberg–Ising chain in the antiferromagnetic massive regime”, Journal of Mathematical Physics, 62:4 (2021)
Miłosz Panfil, “The two particle–hole pairs contribution to the dynamic correlation functions of quantum integrable models”, J. Stat. Mech., 2021:1 (2021), 013108
Etienne Granet, “Low-density limit of dynamical correlations in the Lieb–Liniger model”, J. Phys. A: Math. Theor., 54:15 (2021), 154001
Etienne Granet, Fabian Essler, “Systematic strong coupling expansion for out-of-equilibrium dynamics in the Lieb-Liniger model”, SciPost Phys., 11:3 (2021)
Kayo Kinjo, Eriko Kaminishi, Takashi Mori, Jun Sato, Rina Kanamoto, Tetsuo Deguchi, “Quantum Dark Solitons in the 1D Bose Gas: From Single to Double Dark-Solitons”, Universe, 8:1 (2021), 2
Neil Robinson, Albertus de Klerk, Jean-Sébastien Caux, “On computing non-equilibrium dynamics following a quench”, SciPost Phys., 11:6 (2021)