Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1990, Volume 82, Number 3, Pages 331–348 (Mi tmf5711)  

This article is cited in 14 scientific papers (total in 14 papers)

Correlation functions of the one-dimensional Hubbard model

N. M. Bogolyubov, V. E. Korepin
References:
Abstract: An expression that describes the asymptotic behavior of the time and temperature correlation functions of the one-dimensional Hubbard model is proposed. Conformal field theory is used to calculate the critical exponents that characterize the decrease of the correlation functions at large distances. Their dependence on an external magnetic field and on the population density is studied.
Received: 12.04.1989
English version:
Theoretical and Mathematical Physics, 1990, Volume 82, Issue 3, Pages 231–243
DOI: https://doi.org/10.1007/BF01029216
Bibliographic databases:
Language: Russian
Citation: N. M. Bogolyubov, V. E. Korepin, “Correlation functions of the one-dimensional Hubbard model”, TMF, 82:3 (1990), 331–348; Theoret. and Math. Phys., 82:3 (1990), 231–243
Citation in format AMSBIB
\Bibitem{BogKor90}
\by N.~M.~Bogolyubov, V.~E.~Korepin
\paper Correlation functions of~the one-dimensional Hubbard model
\jour TMF
\yr 1990
\vol 82
\issue 3
\pages 331--348
\mathnet{http://mi.mathnet.ru/tmf5711}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1050285}
\transl
\jour Theoret. and Math. Phys.
\yr 1990
\vol 82
\issue 3
\pages 231--243
\crossref{https://doi.org/10.1007/BF01029216}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1990EB42600002}
Linking options:
  • https://www.mathnet.ru/eng/tmf5711
  • https://www.mathnet.ru/eng/tmf/v82/i3/p331
  • This publication is cited in the following 14 articles:
    1. Johannes Kombe, Michael Köhl, Corinna Kollath, Jean-Sébastien Bernier, “Radio-frequency driving of an attractive Fermi gas in a one-dimensional optical lattice”, Phys. Rev. A, 105:2 (2022)  crossref
    2. Song Cheng, Yi-Cong Yu, M. T. Batchelor, Xi-Wen Guan, “Universal thermodynamics of the one-dimensional attractive Hubbard model”, Phys. Rev. B, 97:12 (2018)  crossref
    3. Song Cheng, Yi-Cong Yu, M. T. Batchelor, Xi-Wen Guan, “Fulde-Ferrell-Larkin-Ovchinnikov correlation and free fluids in the one-dimensional attractive Hubbard model”, Phys. Rev. B, 97:12 (2018)  crossref
    4. Yuzhu Jiang, Xiwen Guan, Junpeng Cao, Hai-Qing Lin, “Exotic pairing in 1D spin-3/2 atomic gases withSO(4)symmetry”, Nuclear Physics B, 895 (2015), 206  crossref
    5. P. D. Sacramento, Y. C. Li, S. J. Gu, J.. M. P. Carmelo, “Spinon and η-spinon correlation functions of the Hubbard chain”, Eur. Phys. J. B, 86:12 (2013)  crossref
    6. Xi-Wen Guan, Murray T. Batchelor, Chaohong Lee, “Fermi gases in one dimension: From Bethe ansatz to experiments”, Rev. Mod. Phys., 85:4 (2013), 1633  crossref
    7. A. A. Zvyagin, “Critical exponents for a Hubbard chain with the spin-orbit interaction”, Phys. Rev. B, 86:8 (2012)  crossref
    8. J.Y. Lee, X.W. Guan, “Asymptotic correlation functions and FFLO signature for the one-dimensional attractive spin-1/2 Fermi gas”, Nuclear Physics B, 853:1 (2011), 125  crossref
    9. Andreas Lüscher, Andreas M. Läuchli, Reinhard M. Noack, “Spatial noise correlations of a chain of ultracold fermions: A numerical study”, Phys. Rev. A, 76:4 (2007)  crossref
    10. A. A. Zvyagin, “To the theory of spin–charge separation in one-dimensional correlated electron systems”, Low Temperature Physics, 30:9 (2004), 729  crossref
    11. A. Schadschneider, Gang Su, J. Zittartz, “Exact solution of the one-dimensional fermionic model with correlated hopping”, Z. Phys. B, 102:3 (1997), 393  crossref
    12. G Bedurftig, H Frahm, “Thermodynamics of an integrable model for electrons with correlated hopping”, J. Phys. A: Math. Gen., 28:16 (1995), 4453  crossref
    13. A. A. Zvyagin, “Exactly solvable models of an effectively two-dimensional Luttinger liquid”, Soviet Journal of Low Temperature Physics, 18:9 (1992), 723  crossref
    14. N. M. Bogoliubov, “The logarithmic corrections in the one-dimensional Hubbard model with attraction”, J. Soviet Math., 62:5 (1992), 2955–2963  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :146
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025