Abstract:
An expression that describes the asymptotic behavior of the time and temperature correlation functions of the one-dimensional Hubbard model is proposed. Conformal field theory is used to calculate the critical exponents that characterize the decrease of the correlation functions at large distances. Their dependence on an external magnetic field and on the population density is studied.
Citation:
N. M. Bogolyubov, V. E. Korepin, “Correlation functions of the one-dimensional Hubbard model”, TMF, 82:3 (1990), 331–348; Theoret. and Math. Phys., 82:3 (1990), 231–243
This publication is cited in the following 14 articles:
Johannes Kombe, Michael Köhl, Corinna Kollath, Jean-Sébastien Bernier, “Radio-frequency driving of an attractive Fermi gas in a one-dimensional optical lattice”, Phys. Rev. A, 105:2 (2022)
Song Cheng, Yi-Cong Yu, M. T. Batchelor, Xi-Wen Guan, “Universal thermodynamics of the one-dimensional attractive Hubbard model”, Phys. Rev. B, 97:12 (2018)
Song Cheng, Yi-Cong Yu, M. T. Batchelor, Xi-Wen Guan, “Fulde-Ferrell-Larkin-Ovchinnikov correlation and free fluids in the one-dimensional attractive Hubbard model”, Phys. Rev. B, 97:12 (2018)
P. D. Sacramento, Y. C. Li, S. J. Gu, J.. M. P. Carmelo, “Spinon and η-spinon correlation functions of the Hubbard chain”, Eur. Phys. J. B, 86:12 (2013)
Xi-Wen Guan, Murray T. Batchelor, Chaohong Lee, “Fermi gases in one dimension: From Bethe ansatz to experiments”, Rev. Mod. Phys., 85:4 (2013), 1633
A. A. Zvyagin, “Critical exponents for a Hubbard chain with the spin-orbit interaction”, Phys. Rev. B, 86:8 (2012)
J.Y. Lee, X.W. Guan, “Asymptotic correlation functions and FFLO signature for the one-dimensional attractive spin-1/2 Fermi gas”, Nuclear Physics B, 853:1 (2011), 125
Andreas Lüscher, Andreas M. Läuchli, Reinhard M. Noack, “Spatial noise correlations of a chain of ultracold fermions: A numerical study”, Phys. Rev. A, 76:4 (2007)
A. A. Zvyagin, “To the theory of spin–charge separation in one-dimensional correlated electron systems”, Low Temperature Physics, 30:9 (2004), 729
A. Schadschneider, Gang Su, J. Zittartz, “Exact solution of the one-dimensional fermionic model with correlated hopping”, Z. Phys. B, 102:3 (1997), 393
G Bedurftig, H Frahm, “Thermodynamics of an integrable model for electrons with correlated hopping”, J. Phys. A: Math. Gen., 28:16 (1995), 4453
A. A. Zvyagin, “Exactly solvable models of an effectively two-dimensional Luttinger liquid”, Soviet Journal of Low Temperature Physics, 18:9 (1992), 723
N. M. Bogoliubov, “The logarithmic corrections in the one-dimensional Hubbard model with attraction”, J. Soviet Math., 62:5 (1992), 2955–2963