Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1988, Volume 77, Number 1, Pages 42–50 (Mi tmf5679)  

This article is cited in 7 scientific papers (total in 7 papers)

Single-loop counterterm for 4-dimensional Sigma model with higher derivatives

I. L. Buchbinder, S. V. Ketov
Full-text PDF (935 kB) Citations (7)
References:
Abstract: The most general action without dimensional parameters for the nonlinear sigma model with higher derivatives (of fourth order) is formulated in 4-dimensional space-time. A generalized Schwinger–DeWitt technique is used to calculate the single-loop counterterm up to terms proportional to the equations of motion. Conditions of single-loop finiteness are established, and renormalization-group equations for the multiplicatively renormalizable $n$-sphere case are obtained. Solutions of the renormalization-group equations with asymptotic freedom in the ultraviolet region are found.
Received: 06.04.1987
English version:
Theoretical and Mathematical Physics, 1988, Volume 77, Issue 1, Pages 1032–1038
DOI: https://doi.org/10.1007/BF01028677
Bibliographic databases:
Language: Russian
Citation: I. L. Buchbinder, S. V. Ketov, “Single-loop counterterm for 4-dimensional Sigma model with higher derivatives”, TMF, 77:1 (1988), 42–50; Theoret. and Math. Phys., 77:1 (1988), 1032–1038
Citation in format AMSBIB
\Bibitem{BucKet88}
\by I.~L.~Buchbinder, S.~V.~Ketov
\paper Single-loop counterterm for 4-dimensional Sigma model with higher derivatives
\jour TMF
\yr 1988
\vol 77
\issue 1
\pages 42--50
\mathnet{http://mi.mathnet.ru/tmf5679}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=972480}
\transl
\jour Theoret. and Math. Phys.
\yr 1988
\vol 77
\issue 1
\pages 1032--1038
\crossref{https://doi.org/10.1007/BF01028677}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1988AD89600004}
Linking options:
  • https://www.mathnet.ru/eng/tmf5679
  • https://www.mathnet.ru/eng/tmf/v77/i1/p42
  • This publication is cited in the following 7 articles:
    1. Darren T. Grasso, Sergei M. Kuzenko, Joshua R. Pinelli, “Weyl invariance, non-compact duality and conformal higher-derivative sigma models”, Eur. Phys. J. C, 83:3 (2023)  crossref
    2. Matteo Romoli, Omar Zanusso, “Different kind of four-dimensional brane for string theory”, Phys. Rev. D, 105:12 (2022)  crossref
    3. I. L. Buchbinder, A. S. Budekhina, B. S. Merzlikin, “On a structure of the one-loop divergences in 4D harmonic superspace sigma-model”, Eur. Phys. J. C, 82:1 (2022)  crossref
    4. Christian F. Steinwachs, “Non-perturbative quantum Galileon in the exact renormalization group”, J. Cosmol. Astropart. Phys., 2021:04 (2021), 038  crossref
    5. Raphael Flore, Andreas Wipf, Omar Zanusso, “Functional renormalization group of the nonlinear sigma model and theO(N)universality class”, Phys. Rev. D, 87:6 (2013)  crossref
    6. Roberto Percacci, Omar Zanusso, “One loop beta functions and fixed points in higher derivative sigma models”, Phys. Rev. D, 81:6 (2010)  crossref
    7. A. T. Banin, I. L. Buchbinder, N. G. Pletnev, “Quantum properties of the four-dimensional generic chiral superfield model”, Phys. Rev. D, 74:4 (2006)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :124
    References:60
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025