Abstract:
Factorization conditions are obtained and an example is given of a
theory of equal-mass relativistic particles on a half-line with
reflection corresponding to the Bn, Cn, Dn root systems.
Generalized factorization equations are introduced, and the analog
of Yang's S matrix is considered for an arbitrary root system.
For the system Bn an example of an S matrix with elliptic
dependence on the rapidities is constructed; it generalizes
Belavin's S matrix.
Citation:
I. V. Cherednik, “Factorizing particles on a half-line and root systems”, TMF, 61:1 (1984), 35–44; Theoret. and Math. Phys., 61:1 (1984), 977–983
\Bibitem{Che84}
\by I.~V.~Cherednik
\paper Factorizing particles on a half-line and root systems
\jour TMF
\yr 1984
\vol 61
\issue 1
\pages 35--44
\mathnet{http://mi.mathnet.ru/tmf5654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=774205}
\zmath{https://zbmath.org/?q=an:0575.22021}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 61
\issue 1
\pages 977--983
\crossref{https://doi.org/10.1007/BF01038545}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984AGK6100004}
Linking options:
https://www.mathnet.ru/eng/tmf5654
https://www.mathnet.ru/eng/tmf/v61/i1/p35
This publication is cited in the following 534 articles:
Charbel Abetian, Nikolai Kitanine, Véronique Terras, “Boundary overlap in the open XXZ spin chain”, SciPost Phys., 18:1 (2025)
Jairo S. Santos, Fabiano C. Simas, Adalto R. Gomes, “Half-line kink scattering in the ϕ4 model with Dirichlet boundary conditions”, J. High Energ. Phys., 2025:1 (2025)
Yicheng Tang, Pradip Kattel, J. H. Pixley, Natan Andrei, “Quantum Zeno effect in noisy integrable quantum circuits for impurity models”, Phys. Rev. B, 111:5 (2025)
Andrea Albano, Marzia Mazzotta, Paola Stefanelli, “Reflections to set-theoretic solutions of the Yang-Baxter equation”, Journal of Algebra, 2025
Kang Lu, Weiqiang Wang, Weinan Zhang, “Affine $\imath $Quantum Groups and Twisted Yangians in Drinfeld Presentations”, Commun. Math. Phys., 406:5 (2025)
Karol K. Kozlowski, Véronique Terras, “Multi-point Correlation Functions in the Boundary XXZ Chain at Finite Temperature”, Ann. Henri Poincaré, 25:1 (2024), 1007
Giuliano Niccoli, Véronique Terras, “On correlation functions for the open XXZ chain with non-longitudinal boundary fields: The case with a constraint”, SciPost Phys., 16:4 (2024)
Sanu Bera, Snehashis Mukherjee, “Dipper Donkin Quantized Matrix Algebra and Reflection Equation Algebra at Root of Unity”, Algebr Represent Theor, 27:1 (2024), 723
Alec Cooper, Bart Vlaar, Robert Weston, “A Q-Operator for Open Spin Chains II: Boundary Factorization”, Commun. Math. Phys., 405:5 (2024)
Dmitry Kolyaskin, Vladimir V Mangazeev, “Triangular solutions to the reflection equation for U q ( s
l n ^ )”, J. Phys. A: Math. Theor., 57:24 (2024), 245201
Dmitry V. Talalaev, “RE-algebras, quasi-determinants and the full Toda system”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100898
Alexandr Garbali, Jan de Gier, William Mead, Michael Wheeler, “Symmetric Functions from the Six-Vertex Model in Half-Space”, Ann. Henri Poincaré, 2024
Kenny De Commer, Stephen T. Moore, “Representation theory of the reflection equation algebra II: Theory of Shapes”, Journal of Algebra, 2024
P. V. Antonenko, N. M. Belousov, S. È. Derkachov, S. M. Khoroshkin, “Reflection operator and hypergeometry I: $SL(2,\mathbb{R})$ spin chain”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 5–46
P. V. Antonenko, N. M. Belousov, S. È. Derkachov, P. A. Valinevich, “Reflection operator and hypergeometry II: $SL(2,\mathbb{C})$ spin chain”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 47–79
Riccarda Bonsignori, Luca Capizzi, Pantelis Panopoulos, “Boundary Symmetry Breaking in CFT and the string order parameter”, J. High Energ. Phys., 2023:5 (2023)
Marius de Leeuw, Rafael I. Nepomechie, Ana L. Retore, “Flag integrable models and generalized graded algebras”, J. High Energ. Phys., 2023:6 (2023)