Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 73, Number 3, Pages 348–361 (Mi tmf5637)  

This article is cited in 43 scientific papers (total in 43 papers)

Uniqueness method: Multiloop calculations in QCD

D. I. Kazakov, A. V. Kotikov
References:
Abstract: The method of uniqueness is extended to diagrams with an arbitrary number of derivatives (or momenta) on the lines. A number of useful formulas is obtained which can be used for calculations in gauge theories. Some examples of multiloop calculations in QCD are given. The method is applied to the calculation of αs-correction to the longitudinal structure function of deep-inelastic lepton-hadron scattering.
Received: 21.04.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 73, Issue 3, Pages 1264–1274
DOI: https://doi.org/10.1007/BF01041909
Bibliographic databases:
Language: Russian
Citation: D. I. Kazakov, A. V. Kotikov, “Uniqueness method: Multiloop calculations in QCD”, TMF, 73:3 (1987), 348–361; Theoret. and Math. Phys., 73:3 (1987), 1264–1274
Citation in format AMSBIB
\Bibitem{KazKot87}
\by D.~I.~Kazakov, A.~V.~Kotikov
\paper Uniqueness method: Multiloop calculations in QCD
\jour TMF
\yr 1987
\vol 73
\issue 3
\pages 348--361
\mathnet{http://mi.mathnet.ru/tmf5637}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 73
\issue 3
\pages 1264--1274
\crossref{https://doi.org/10.1007/BF01041909}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987P129500003}
Linking options:
  • https://www.mathnet.ru/eng/tmf5637
  • https://www.mathnet.ru/eng/tmf/v73/i3/p348
  • This publication is cited in the following 43 articles:
    1. A.V. Kotikov, I.A. Kotikov, “On anomalous dimension in 3D ABJM model”, Nuclear Physics B, 2025, 116811  crossref
    2. Anatoly V. Kotikov, “Effective Quantum Field Theory Methods for Calculating Feynman Integrals”, Symmetry, 16:1 (2023), 52  crossref
    3. Gauthier Durieux, Matthew McCullough, Ennio Salvioni, “Gegenbauer Goldstones”, J. High Energ. Phys., 2022:1 (2022)  crossref
    4. Kotikov V A., “Some Examples of Calculation of Massless and Massive Feynman Integrals”, Particles, 4:3 (2021), 361–380  crossref  isi
    5. Anatoly V. Kotikov, Texts & Monographs in Symbolic Computation, Anti-Differentiation and the Calculation of Feynman Amplitudes, 2021, 235  crossref
    6. Anatoly V. Kotikov, “About Calculation of Massless and Massive Feynman Integrals”, Particles, 3:2 (2020), 394  crossref
    7. Kotikov A.V. Teber S., “Multi-Loop Techniques For Massless Feynman Diagram Calculations”, Phys. Part. Nuclei, 50:1 (2019), 1–41  crossref  isi
    8. Teber S., Kotikov A.V., “Field Theoretic Renormalization Study of Interaction Corrections to the Universal Ac Conductivity of Graphene”, J. High Energy Phys., 2018, no. 7, 082  crossref  isi
    9. Gracey J.A., “Large N-F Quantum Field Theory”, Int. J. Mod. Phys. A, 33:35 (2018), 1830032  crossref  mathscinet  zmath  isi  scopus
    10. A. V. Kotikov, “The property of maximal transcendentality: Calculation of Feynman integrals”, Theoret. and Math. Phys., 190:3 (2017), 391–401  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    11. S. Teber, A. V. Kotikov, “Interaction corrections to the minimal conductivity of graphene via dimensional regularization”, EPL, 107:5 (2014), 57001  crossref
    12. Groote S., Koerner J.G., Pivovarov A.A., “Understanding Pt Results for Decays of Tau-Leptons Into Hadrons”, Phys. Part. Nuclei, 44:2 (2013), 285–298  crossref  isi
    13. Jan Plefka, Konstantin Wiegandt, “Three-point functions of twist-two operators in $ \mathcal{N}=4 $ SYM at one loop”, J. High Energ. Phys., 2012:10 (2012)  crossref
    14. Claudio Corianò, Luigi Delle Rose, Emil Mottola, Mirko Serino, “Graviton vertices and the mapping of anomalous correlators to momentum space for a general conformal field theory”, J. High Energ. Phys., 2012:8 (2012)  crossref
    15. Igor Kondrashuk, Alvaro Vergara, “Transformations of triangle ladder diagrams”, J. High Energ. Phys., 2010:3 (2010)  crossref
    16. Corneliu Sochichiu, “Dilatation operator in 3d”, J. High Energy Phys., 2009:03 (2009), 042  crossref
    17. Igor Kondrashuk, Anatoly Kotikov, Analysis and Mathematical Physics, 2009, 337  crossref
    18. B. A. Kniehl, A. V. Kotikov, O. L. Veretin, “Orthopositronium lifetime atO(α)andO(α3 ln α)in closed form”, Phys. Rev. A, 80:5 (2009)  crossref
    19. A. Kotikov, J.H. Kühn, O. Veretin, “Two-loop formfactors in theories with mass gap and Z-boson production”, Nuclear Physics B, 788:1-2 (2008), 47  crossref
    20. Kotikov, AV, “Deep inelastic scattering: Q(2) dependence of structure functions”, Physics of Particles and Nuclei, 38:1 (2007), 1  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:428
    Full-text PDF :161
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025