Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 122, Number 2, Pages 205–211
DOI: https://doi.org/10.4213/tmf563
(Mi tmf563)
 

Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions

C. Doss-Bachelet, J.-P. Françoise

Université Pierre & Marie Curie, Paris VI
References:
Abstract: We focus on integrable systems with two degrees of freedom that are integrable in the Liouville sense and are obtained as real and imaginary parts of a polynomial (or entire) complex function in two complex variables. We propose definitions of the actions for such systems (which are not of the Arnol'd–Liouville type). We show how to compute the actions from a complex Hamilton–Jacobi equation and apply these techniques to several examples including those recently considered in relation to perturbations of the Ruijsenaars–Schneider system. These examples introduce the crucial problem of the semiclassical approach to the corresponding quantum systems.
English version:
Theoretical and Mathematical Physics, 2000, Volume 122, Issue 2, Pages 170–175
DOI: https://doi.org/10.1007/BF02551194
Bibliographic databases:
Language: Russian
Citation: C. Doss-Bachelet, J. Françoise, “Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions”, TMF, 122:2 (2000), 205–211; Theoret. and Math. Phys., 122:2 (2000), 170–175
Citation in format AMSBIB
\Bibitem{DosFra00}
\by C.~Doss-Bachelet, J.~Fran{\c c}oise
\paper Integrable Hamiltonian systems with two degrees of freedom associated with holomorphic functions
\jour TMF
\yr 2000
\vol 122
\issue 2
\pages 205--211
\mathnet{http://mi.mathnet.ru/tmf563}
\crossref{https://doi.org/10.4213/tmf563}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1776518}
\zmath{https://zbmath.org/?q=an:0983.37070}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 2
\pages 170--175
\crossref{https://doi.org/10.1007/BF02551194}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086555000005}
Linking options:
  • https://www.mathnet.ru/eng/tmf563
  • https://doi.org/10.4213/tmf563
  • https://www.mathnet.ru/eng/tmf/v122/i2/p205
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025