Abstract:
Classification of thermodynamic phases in superfluid ${}^3$He and neutron star is given
by a new method. The orbits classification of the group $SO(3)\times SO(3)\times U(1)$ acting on the space of complex symmetric matrices with zero trace is considered. The associative
algebras and Lie algebras appearing in this construction are characterized.
Citation:
F. A. Bogomolov, M. I. Monastyrskii, “Propagator of Yang–Mills field in light-cone gauge”, TMF, 73:2 (1987), 210–222; Theoret. and Math. Phys., 73:2 (1987), 1165–1175
\Bibitem{BogMon87}
\by F.~A.~Bogomolov, M.~I.~Monastyrskii
\paper Propagator of Yang--Mills field in light-cone gauge
\jour TMF
\yr 1987
\vol 73
\issue 2
\pages 210--222
\mathnet{http://mi.mathnet.ru/tmf5621}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=933547}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 73
\issue 2
\pages 1165--1175
\crossref{https://doi.org/10.1007/BF01017586}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987P005000005}
Linking options:
https://www.mathnet.ru/eng/tmf5621
https://www.mathnet.ru/eng/tmf/v73/i2/p210
This publication is cited in the following 2 articles:
François Gay-Balmaz, Michael Monastyrsky, Tudor S. Ratiu, “Lagrangian Reductions and Integrable Systems in Condensed Matter”, Commun. Math. Phys., 335:2 (2015), 609
M. I. Monastyrskii, P. V. Sasorov, “Topology of Vortices in Neutron Stars”, Proc. Steklov Inst. Math., 263 (2008), 127–133