Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 73, Number 1, Pages 111–124 (Mi tmf5610)  

This article is cited in 20 scientific papers (total in 20 papers)

Phase transitions in quantum models of rotators and ferroelectrics

L. A. Pastur, B. A. Khoruzhenko
References:
Abstract: Conditions of the existence of long range order and bounds on critical temperatures are found for quantum models of rotators, quadrupoles and ferroelectrics. The method used is based on combining infrared bounds with the technique of the Wiener integrals.
Received: 14.04.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 73, Issue 1, Pages 1094–1104
DOI: https://doi.org/10.1007/BF01022968
Bibliographic databases:
Language: Russian
Citation: L. A. Pastur, B. A. Khoruzhenko, “Phase transitions in quantum models of rotators and ferroelectrics”, TMF, 73:1 (1987), 111–124; Theoret. and Math. Phys., 73:1 (1987), 1094–1104
Citation in format AMSBIB
\Bibitem{PasKho87}
\by L.~A.~Pastur, B.~A.~Khoruzhenko
\paper Phase transitions in quantum models of rotators and ferroelectrics
\jour TMF
\yr 1987
\vol 73
\issue 1
\pages 111--124
\mathnet{http://mi.mathnet.ru/tmf5610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=939799}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 73
\issue 1
\pages 1094--1104
\crossref{https://doi.org/10.1007/BF01022968}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987N758200011}
Linking options:
  • https://www.mathnet.ru/eng/tmf5610
  • https://www.mathnet.ru/eng/tmf/v73/i1/p111
  • This publication is cited in the following 20 articles:
    1. Piotr Stachura, Wiesław Pusz, Jacek Wojtkiewicz, “Non-existence of Bose–Einstein condensation in Bose–Hubbard model in dimensions 1 and 2”, Journal of Mathematical Physics, 61:11 (2020)  crossref
    2. Jacek Wojtkiewicz, Wiesław Pusz, Piotr Stachura, “Bogolyubov inequality for the ground state and its application to interacting rotor systems”, Reports on Mathematical Physics, 80:2 (2017), 233  crossref
    3. Jacek Wojtkiewicz, Wiesław Pusz, Piotr Stachura, “Operator Reflection Positivity Inequalities and their Applications to Interacting Quantum Rotors”, Reports on Mathematical Physics, 77:2 (2016), 183  crossref
    4. Jacek Wojtkiewicz, “Long range order in the ground state of quantum interacting rotors in two dimensions”, Physica A: Statistical Mechanics and its Applications, 391:23 (2012), 5918  crossref
    5. Yuri Kozitsky, Tatiana Pasurek, “Euclidean Gibbs Measures of Interacting Quantum Anharmonic Oscillators”, J Stat Phys, 127:5 (2007), 985  crossref
    6. Alina Kargol, Yuri Kozitsky, “A Phase Transition in a Quantum Crystal with Asymmetric Potentials”, Lett Math Phys, 79:3 (2007), 279  crossref
    7. Alexei L Rebenko, Valentin A Zagrebnov, “Gibbs state uniqueness for an anharmonic quantum crystal with a non-polynomial double-well potential”, J. Stat. Mech., 2006:09 (2006), P09002  crossref
    8. Y. Kondratiev, Y. Kozitsky, Encyclopedia of Mathematical Physics, 2006, 376  crossref
    9. Y Kondratiev, Y Kozitsky, Encyclopedia of Mathematical Physics, 2006, 197  crossref
    10. Yuri Kozitsky, “Gap Estimates for Double-Well Schr�dinger Operators and Quantum Stabilization of Anharmonic Crystals”, Journal of Dynamics and Differential Equations, 16:2 (2004), 385  crossref
    11. Sergio Albeverio, Yuri Kondratiev, Yuri Kozitsky, Michael Röckner, “Small Mass Implies Uniqueness of Gibbs States of a Quantum Crystal”, Commun. Math. Phys., 241:1 (2003), 69  crossref
    12. S. ALBEVERIO, YU. KONDRATIEV, YU. KOZITSKY, M. RÖCKNER, “EUCLIDEAN GIBBS STATES OF QUANTUM LATTICE SYSTEMS”, Rev. Math. Phys., 14:12 (2002), 1335  crossref
    13. S Albeverio, Yu.G Kondratiev, R.A Minlos, G.V Shchepan'uk, “Ground state euclidean measures for quantum lattice systems on compact manifolds”, Reports on Mathematical Physics, 45:3 (2000), 419  crossref
    14. R. A. MINLOS, A. VERBEURE, V. A. ZAGREBNOV, “A QUANTUM CRYSTAL MODEL IN THE LIGHT-MASS LIMIT: GIBBS STATES”, Rev. Math. Phys., 12:07 (2000), 981  crossref
    15. Corgini, M, “Gaussian domination in a quantum system of nonlinear oscillators”, Modern Physics Letters B, 13:12–13 (1999), 411  crossref  isi
    16. B. Helffer, Microlocal Analysis and Spectral Theory, 1997, 307  crossref
    17. A Verbeure, V A Zagrebnov, “No-go theorem for quantum structural phase transitions”, J. Phys. A: Math. Gen., 28:18 (1995), 5415  crossref
    18. Roman Gielerak, Robert Olkiewicz, “Gentle perturbations of the free Bose gas. I”, J Stat Phys, 80:3-4 (1995), 875  crossref
    19. V. S. Barbulyak, Yu. G. Kondrat'ev, “The quasiclassical limit for the Schrödinger operator and phase transitions in quantum statistical physics”, Funct. Anal. Appl., 26:2 (1992), 124–126  mathnet  crossref  mathscinet  zmath  isi
    20. V. S. Barbulyak, “Chessboard estimates and critical temperature in quantum lattice systems”, Ukr Math J, 43:11 (1991), 1466  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:423
    Full-text PDF :156
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025