Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 73, Number 1, Pages 79–84 (Mi tmf5606)  

Convolution of the secular equation of perturbation theory for a degenerate case

R. Kh. Sabirov
References:
Abstract: A simple procedure of the convolution of secular equation of perturbation theory in the degenerate case is suggested which is valid for the arbitrary multiplicity of the unperturbed level degeneration. The expressions obtained can be considered as an extension of the Brilliouin–Wigner perturbation theory to the case of degenerate of almost degenerate states. Some equivalent formulations of the Schrödinger equation are obtained which might be useful in concrete calculations. Problem of an electron in the periodic harmonic potential is considered as an example.
Received: 03.11.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 73, Issue 1, Pages 1072–1076
DOI: https://doi.org/10.1007/BF01022965
Bibliographic databases:
Language: Russian
Citation: R. Kh. Sabirov, “Convolution of the secular equation of perturbation theory for a degenerate case”, TMF, 73:1 (1987), 79–84; Theoret. and Math. Phys., 73:1 (1987), 1072–1076
Citation in format AMSBIB
\Bibitem{Sab87}
\by R.~Kh.~Sabirov
\paper Convolution of the secular equation of perturbation theory for a~degenerate case
\jour TMF
\yr 1987
\vol 73
\issue 1
\pages 79--84
\mathnet{http://mi.mathnet.ru/tmf5606}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 73
\issue 1
\pages 1072--1076
\crossref{https://doi.org/10.1007/BF01022965}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987N758200008}
Linking options:
  • https://www.mathnet.ru/eng/tmf5606
  • https://www.mathnet.ru/eng/tmf/v73/i1/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024