Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1987, Volume 73, Number 1, Pages 3–15 (Mi tmf5599)  

Geometry of classical mechanics with non-Abelian gauge symmetry

M. A. Soloviev
References:
Abstract: Geometry of the gauge orbit bundle is considered for the $SO(3)$ Yang–Mills mechanics. It is shown that it may serve as a finite-dimensional model of the geometry of nonabelian field theory with respect to such properties as the nonexistence of a global gauge, the Gribov ambiguities, convexity of the region within the corresponding horizon and stratification. The connection and the Lagrangian on the orbit space are obtained.
Received: 07.04.1986
English version:
Theoretical and Mathematical Physics, 1987, Volume 73, Issue 1, Pages 1019–1028
DOI: https://doi.org/10.1007/BF01022958
Bibliographic databases:
Language: Russian
Citation: M. A. Soloviev, “Geometry of classical mechanics with non-Abelian gauge symmetry”, TMF, 73:1 (1987), 3–15; Theoret. and Math. Phys., 73:1 (1987), 1019–1028
Citation in format AMSBIB
\Bibitem{Sol87}
\by M.~A.~Soloviev
\paper Geometry of classical mechanics with non-Abelian gauge symmetry
\jour TMF
\yr 1987
\vol 73
\issue 1
\pages 3--15
\mathnet{http://mi.mathnet.ru/tmf5599}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=93979}
\transl
\jour Theoret. and Math. Phys.
\yr 1987
\vol 73
\issue 1
\pages 1019--1028
\crossref{https://doi.org/10.1007/BF01022958}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1987N758200001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5599
  • https://www.mathnet.ru/eng/tmf/v73/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024