Abstract:
The structure of supersymmetric quantum-mechanical systems for
arbitrary number of dimensions of space is investigated. The
generalized factorization method is shown to have a supersymmetrie
origin, and this makes it possible to establish an analytic
correspondence between the spectra and wave functions of different
quantum Hamiltonians.
Citation:
A. A. Andrianov, N. V. Borisov, M. V. Ioffe, M. I. Eides, “Supersymmetric mechanics: A new look at the equivalence of quantum systems”, TMF, 61:1 (1984), 17–28; Theoret. and Math. Phys., 61:1 (1984), 965–972
\Bibitem{AndBorIof84}
\by A.~A.~Andrianov, N.~V.~Borisov, M.~V.~Ioffe, M.~I.~Eides
\paper Supersymmetric mechanics: A new look at the equivalence of quantum systems
\jour TMF
\yr 1984
\vol 61
\issue 1
\pages 17--28
\mathnet{http://mi.mathnet.ru/tmf5592}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=774203}
\transl
\jour Theoret. and Math. Phys.
\yr 1984
\vol 61
\issue 1
\pages 965--972
\crossref{https://doi.org/10.1007/BF01038543}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984AGK6100002}
Linking options:
https://www.mathnet.ru/eng/tmf5592
https://www.mathnet.ru/eng/tmf/v61/i1/p17
This publication is cited in the following 65 articles:
Sara CruzyCruz, Miguel A. Medina-Armendariz, Trends in Mathematics, Geometric Methods in Physics XXXIX, 2023, 57
M Y Tan, M S Nurisya, H Zainuddin, “On the green factorization method and supersymmetry”, Phys. Scr., 98:1 (2023), 015027
Ivan Bocanegra, Sara Cruz y Cruz, “Classes of Balanced Gain-and-Loss Waveguides as Non-Hermtian Potential Hierarchies”, Symmetry, 14:3 (2022), 432
H. A. Yamani, Z. Mouayn, “Properties of shape-invariant tridiagonal Hamiltonians”, Theoret. and Math. Phys., 203:3 (2020), 761–779
Kevin Zelaya, Sara Cruz y Cruz, Oscar Rosas-Ortiz, Trends in Mathematics, Geometric Methods in Physics XXXVIII, 2020, 283
Gabriel González, “Introducing supersymmetric quantum mechanics via point canonical transformations”, Eur. J. Phys., 41:4 (2020), 045401
Zurika Blanco‐Garcia, Oscar Rosas‐Ortiz, Kevin Zelaya, “Interplay between Riccati, Ermakov, and Schrödinger equations to produce complex‐valued potentials with real energy spectrum”, Math Methods in App Sciences, 42:15 (2019), 4925
S Cruz y Cruz, C Santiago‐Cruz, “Position dependent mass Scarf Hamiltonians generated via the Riccati equation”, Math Methods in App Sciences, 42:15 (2019), 4909
Assi I.A. Bahlouli H. Hamdan A., “Exact Solvability of Two New 3D and 1D Non-Relativistic Potentials Within the Tra Framework”, Mod. Phys. Lett. A, 33:32 (2018), 1850187
Ioffe M.V. Kolevatova E.V. Nishnianidze D.N., “Solution of second order supersymmetrical intertwining relations in Minkowski plane”, J. Math. Phys., 57:8 (2016), 082102
Oikonomou V.K., “Low dimensional supersymmetries in SUSY Chern–Simons systems and geometrical implications”, Int. J. Geom. Methods Mod. Phys., 13:6 (2016), 1650083
H Z Liang, “Pseudospin symmetry in nuclear structure and its supersymmetric representation”, Phys. Scr., 91:8 (2016), 083005
M. V. Ioffe, E. V. Kolevatova, D. N. Nishnianidze, “Some properties of the shape-invariant two-dimensional Scarf II model”, Theoret. and Math. Phys., 185:1 (2015), 1445–1453
Oscar Rosas-Ortiz, Octavio Castaños, Dieter Schuch, “New supersymmetry-generated complex potentials with real spectra”, J. Phys. A: Math. Theor., 48:44 (2015), 445302
F. Cannata, M.V. Ioffe, E.V. Kolevatova, D.N. Nishnianidze, “New implicitly solvable potential produced by second order shape invariance”, Annals of Physics, 356 (2015), 438
K. Kleidis, V. K. Oikonomou, “Central Charge Extended Supersymmetric Structures for Fundamental Fermions Around Non-Abelian Vortices”, Int J Theor Phys, 53:8 (2014), 2623
V K Oikonomou, “Localized fermions on domain walls and extended supersymmetric quantum mechanics”, Class. Quantum Grav., 31:2 (2014), 025018
Axel Schulze-Halberg, “Darboux Transformations for Energy-Dependent Potentials and the Klein–Gordon Equation”, Math Phys Anal Geom, 16:2 (2013), 179
Andrianov A.A. Ioffe M.V., “Nonlinear Supersymmetric Quantum Mechanics: Concepts and Realizations”, J. Phys. A-Math. Theor., 45:50 (2012), 503001
Schulze-Halberg A., “Darboux Transformations for (1+2)-Dimensional Fokker-Planck Equations with Constant Diffusion Matrix”, J. Math. Phys., 53:10 (2012), 103519