Abstract:
We study the criterion for a new eigenvalue to appear in the linear spectral problem associated with the intermediate long-wave equation. We compute the asymptotic value of the new eigenvalue in the limit of a small potential using a Fourier decomposition method. We compare the results with those for the Schrödinger operator with a radially symmetrical potential.
Citation:
D. E. Pelinovsky, C. Sulem, “Asymptotic approximations for a new eigenvalue in linear problems without a threshold”, TMF, 122:1 (2000), 118–127; Theoret. and Math. Phys., 122:1 (2000), 98–106
\Bibitem{PelSul00}
\by D.~E.~Pelinovsky, C.~Sulem
\paper Asymptotic approximations for a new eigenvalue in linear problems without a threshold
\jour TMF
\yr 2000
\vol 122
\issue 1
\pages 118--127
\mathnet{http://mi.mathnet.ru/tmf559}
\crossref{https://doi.org/10.4213/tmf559}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1776511}
\zmath{https://zbmath.org/?q=an:0957.35105}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 122
\issue 1
\pages 98--106
\crossref{https://doi.org/10.1007/BF02551173}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000086224200010}
Linking options:
https://www.mathnet.ru/eng/tmf559
https://doi.org/10.4213/tmf559
https://www.mathnet.ru/eng/tmf/v122/i1/p118
This publication is cited in the following 8 articles:
D. E. Pelinovsky, Atomic, Optical, and Plasma Physics, 45, Emergent Nonlinear Phenomena in Bose-Einstein Condensates, 2008, 377
Wang, JD, “Two-dimensional defect modes in optically induced photonic lattices”, Physical Review A, 76:1 (2007), 013828
A. R. Bikmetov, R. R. Gadyl'shin, “On the spectrum of the Schrödinger operator with large potential concentrated on a small set”, Math. Notes, 79:5 (2006), 729–733
D. I. Borisov, R. R. Gadyl'shin, “The spectrum of the Schrödinger operator with a rapidly oscillating compactly supported potential”, Theoret. and Math. Phys., 147:1 (2006), 496–500
A. R. Bikmetov, D. I. Borisov, “Discrete Spectrum of the Schrodinger Operator Perturbed by a Narrowly Supported Potential”, Theoret. and Math. Phys., 145:3 (2005), 1691–1702
R. R. Gadyl'shin, “Local Perturbations of the Schrödinger Operator on the Plane”, Theoret. and Math. Phys., 138:1 (2004), 33–44
Matsuno, Y, “Dark soliton generation for the intermediate nonlinear Schrodinger equation”, Journal of Mathematical Physics, 43:2 (2002), 984
Pelinovsky, DE, “Eigenfunctions and eigenvalues for a scalar Riemann–Hilbert problem associated to inverse scattering”, Communications in Mathematical Physics, 208:3 (2000), 713