Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 3, Pages 427–456
DOI: https://doi.org/10.4213/tmf5536
(Mi tmf5536)
 

This article is cited in 1 scientific paper (total in 1 paper)

Quasi-exact solution of the problem of relativistic bound states in the $(1{+}1)$-dimensional case

K. A. Sveshnikov, P. K. Silaev

M. V. Lomonosov Moscow State University, Faculty of Physics
Full-text PDF (565 kB) Citations (1)
References:
Abstract: We investigate the problem of bound states for bosons and fermions in the framework of the relativistic configurational representation with the kinetic part of the Hamiltonian containing purely imaginary finite shift operators $e^{\pm i\hbar d/dx}$ instead of differential operators. For local $($quasi$)$potentials of the type of a rectangular potential well in the $(1{+}1$)-dimensional case, we elaborate effective methods for solving the problem analytically that allow finding the spectrum and investigating the properties of wave functions in a wide parameter range. We show that the properties of these relativistic bound states differ essentially from those of the corresponding solutions of the Schrödinger and Dirac equations in a static external potential of the same form in a number of fundamental aspects both at the level of wave functions and of the energy spectrum structure. In particular, competition between $\hbar$ and the potential parameters arises, as a result of which these distinctions are retained at low-lying levels in a sufficiently deep potential well for $\hbar\ll1$ and the boson and fermion energy spectra become identical.
Keywords: spectral problem in relativistic configurational representation, finite-difference equation, boson bound state, fermion bound state.
Received: 17.05.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 3, Pages 1665–1689
DOI: https://doi.org/10.1007/s11232-006-0150-1
Bibliographic databases:
Language: Russian
Citation: K. A. Sveshnikov, P. K. Silaev, “Quasi-exact solution of the problem of relativistic bound states in the $(1{+}1)$-dimensional case”, TMF, 149:3 (2006), 427–456; Theoret. and Math. Phys., 149:3 (2006), 1665–1689
Citation in format AMSBIB
\Bibitem{SveSil06}
\by K.~A.~Sveshnikov, P.~K.~Silaev
\paper Quasi-exact solution of the~problem of relativistic bound states in
the~$(1{+}1)$-dimensional case
\jour TMF
\yr 2006
\vol 149
\issue 3
\pages 427--456
\mathnet{http://mi.mathnet.ru/tmf5536}
\crossref{https://doi.org/10.4213/tmf5536}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2321100}
\zmath{https://zbmath.org/?q=an:1177.81135}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1665S}
\elib{https://elibrary.ru/item.asp?id=9433544}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 3
\pages 1665--1689
\crossref{https://doi.org/10.1007/s11232-006-0150-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243703500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845751605}
Linking options:
  • https://www.mathnet.ru/eng/tmf5536
  • https://doi.org/10.4213/tmf5536
  • https://www.mathnet.ru/eng/tmf/v149/i3/p427
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024