Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 149, Number 3, Pages 368–380
DOI: https://doi.org/10.4213/tmf5528
(Mi tmf5528)
 

This article is cited in 1 scientific paper (total in 1 paper)

$S$-matrix description of nonequilibrium finite-temperature systems

V. V. Voronyuk, I. D. Mandzhavidze, A. N. Sisakyan

Joint Institute for Nuclear Research
Full-text PDF (422 kB) Citations (1)
References:
Abstract: We consider the ‘`inclusive" {(}"partial"{\rm)} method for describing nonequilibrium dissipative systems at the early {\rm(}kinetic{\rm)} evolution stage, when the temperature distribution is nonuniform. We formulate the perturbation theory in terms of space–time-local temperature Green’s functions and derive the Liouville equation for the one-particle partition function.
Keywords: real-time finite-temperature field theory, perturbation theory.
Received: 19.05.2006
English version:
Theoretical and Mathematical Physics, 2006, Volume 149, Issue 3, Pages 1617–1627
DOI: https://doi.org/10.1007/s11232-006-0145-y
Bibliographic databases:
Language: Russian
Citation: V. V. Voronyuk, I. D. Mandzhavidze, A. N. Sisakyan, “$S$-matrix description of nonequilibrium finite-temperature systems”, TMF, 149:3 (2006), 368–380; Theoret. and Math. Phys., 149:3 (2006), 1617–1627
Citation in format AMSBIB
\Bibitem{VorManSis06}
\by V.~V.~Voronyuk, I.~D.~Mandzhavidze, A.~N.~Sisakyan
\paper $S$-matrix description of nonequilibrium finite-temperature systems
\jour TMF
\yr 2006
\vol 149
\issue 3
\pages 368--380
\mathnet{http://mi.mathnet.ru/tmf5528}
\crossref{https://doi.org/10.4213/tmf5528}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2321096}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...149.1617V}
\elib{https://elibrary.ru/item.asp?id=9433539}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 149
\issue 3
\pages 1617--1627
\crossref{https://doi.org/10.1007/s11232-006-0145-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243703500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845762893}
Linking options:
  • https://www.mathnet.ru/eng/tmf5528
  • https://doi.org/10.4213/tmf5528
  • https://www.mathnet.ru/eng/tmf/v149/i3/p368
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :207
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024