Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1992, Volume 90, Number 2, Pages 218–225 (Mi tmf5525)  

This article is cited in 7 scientific papers (total in 7 papers)

The Landau–Lifshitz formula and the correspondence principle for semiclassical matrix elements

È. S. Medvedev

Chernogolovka Institute of Chemical Physics of the USSR Academy of Sciences
Full-text PDF (696 kB) Citations (7)
References:
Abstract: The semiclassical Landau–Lifshitz formula with pre-exponential factor is derived and its cormection with the correspondence principle is traced. Illustrations are given of its use for the Morse potential and the modified Peschl–Teller potential, and also for a very simple potential with first-order poles.
Received: 04.06.1991
English version:
Theoretical and Mathematical Physics, 1992, Volume 90, Issue 2, Pages 146–151
DOI: https://doi.org/10.1007/BF01028438
Bibliographic databases:
Language: Russian
Citation: È. S. Medvedev, “The Landau–Lifshitz formula and the correspondence principle for semiclassical matrix elements”, TMF, 90:2 (1992), 218–225; Theoret. and Math. Phys., 90:2 (1992), 146–151
Citation in format AMSBIB
\Bibitem{Med92}
\by \`E.~S.~Medvedev
\paper The Landau--Lifshitz formula and the correspondence principle for semiclassical matrix elements
\jour TMF
\yr 1992
\vol 90
\issue 2
\pages 218--225
\mathnet{http://mi.mathnet.ru/tmf5525}
\transl
\jour Theoret. and Math. Phys.
\yr 1992
\vol 90
\issue 2
\pages 146--151
\crossref{https://doi.org/10.1007/BF01028438}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992JT83800006}
Linking options:
  • https://www.mathnet.ru/eng/tmf5525
  • https://www.mathnet.ru/eng/tmf/v90/i2/p218
  • This publication is cited in the following 7 articles:
    1. Masafumi Tsuyuki, Shunki Furudate, Yuto Kugaya, Satoshi Yabushita, “Graphical Transition Moment Decomposition and Conceptual Density Functional Theory Approaches to Study the Fundamental and Lower-Level Overtone Absorption Intensities of Some OH Stretching Vibrations”, J. Phys. Chem. A, 125:10 (2021), 2101  crossref
    2. Hirokazu Takahashi, Kaito Takahashi, Satoshi Yabushita, “Interpretation of Semiclassical Transition Moments through Wave Function Expansion of Dipole Moment Functions with Applications to the OH Stretching Spectra of Simple Acids and Alcohols”, J. Phys. Chem. A, 119:20 (2015), 4834  crossref
    3. Emile S. Medvedev, “Towards understanding the nature of the intensities of overtone vibrational transitions”, The Journal of Chemical Physics, 137:17 (2012)  crossref
    4. A. V. Sergeev, Bilha Segev, “Semiclassical estimation of Franck–Condon factors and transition rates for vertical and nonvertical transitions”, The Journal of Chemical Physics, 118:13 (2003), 5852  crossref
    5. P. V. Elyutin, O. V. Smirnova, “On the quasi-classical limit of the quadratic susceptibility”, Theoret. and Math. Phys., 119:1 (1999), 471–480  mathnet  crossref  crossref  zmath  isi  elib
    6. H.K. Shin, “Near-resonant vibrational energy transfer from nitrous oxide to benzene”, Chemical Physics Letters, 281:1-3 (1997), 175  crossref
    7. Emile S. Medvedev, “The accuracy of the quasiclassical Landau–Lifshitz formula for matrix elements and its application to the analysis of the intensities of vibrational overtone transitions”, The Journal of Chemical Physics, 100:10 (1994), 7192  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:508
    Full-text PDF :210
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025