Abstract:
A single-particle model for a multidimensional cubic lattice is developed on the basis of the theory of extensions. For this model, the Riemann surface of the quasimomentum is constructed, and an expression is obtained for the sum of the effective masses at the edges of the spectral bands in terms of the extension
parameters.
Citation:
B. S. Pavlov, S. V. Frolov, “Formula for the sum of the effective masses of a multidimensional lattice”, TMF, 87:3 (1991), 456–472; Theoret. and Math. Phys., 87:3 (1991), 657–668
\Bibitem{PavFro91}
\by B.~S.~Pavlov, S.~V.~Frolov
\paper Formula for the sum of the effective masses of a~multidimensional lattice
\jour TMF
\yr 1991
\vol 87
\issue 3
\pages 456--472
\mathnet{http://mi.mathnet.ru/tmf5506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1129678}
\zmath{https://zbmath.org/?q=an:1189.81288}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 3
\pages 657--668
\crossref{https://doi.org/10.1007/BF01017953}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GW78600009}
Linking options:
https://www.mathnet.ru/eng/tmf5506
https://www.mathnet.ru/eng/tmf/v87/i3/p456
This publication is cited in the following 3 articles:
S. V. Frolov, “A spectral identity for the multidimensional Schrödinger equation with periodic potential”, Theoret. and Math. Phys., 91:3 (1992), 692–695
B. S. Pavlov, S. V. Frolov, “Spectral identities for band spectrum in one-dimensional case”, Theoret. and Math. Phys., 89:1 (1991), 1013–1019
S. V. Frolov, “Multidimensional leray residues and effective masses of a lattice model”, Theoret. and Math. Phys., 89:1 (1991), 1123–1126