Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 87, Number 3, Pages 391–403 (Mi tmf5498)  

This article is cited in 39 scientific papers (total in 39 papers)

Jordan algebras and generalized Korteweg–de Vries equations

S. I. Svinolupov
References:
Abstract: Integrability criteria for many-field Korteweg–de Vries equations are obtained. A one-to-one correspondence between such equations and Jordan algebras is established. It is shown that the so-called irreducible systems correspond to simple Jordan algebras.
Received: 21.11.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 87, Issue 3, Pages 611–620
DOI: https://doi.org/10.1007/BF01017947
Bibliographic databases:
Language: Russian
Citation: S. I. Svinolupov, “Jordan algebras and generalized Korteweg–de Vries equations”, TMF, 87:3 (1991), 391–403; Theoret. and Math. Phys., 87:3 (1991), 611–620
Citation in format AMSBIB
\Bibitem{Svi91}
\by S.~I.~Svinolupov
\paper Jordan algebras and generalized Korteweg--de~Vries equations
\jour TMF
\yr 1991
\vol 87
\issue 3
\pages 391--403
\mathnet{http://mi.mathnet.ru/tmf5498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1129673}
\zmath{https://zbmath.org/?q=an:0746.35044}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 3
\pages 611--620
\crossref{https://doi.org/10.1007/BF01017947}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GW78600003}
Linking options:
  • https://www.mathnet.ru/eng/tmf5498
  • https://www.mathnet.ru/eng/tmf/v87/i3/p391
  • This publication is cited in the following 39 articles:
    1. Metin Gürses, Aslı Pekcan, “The method of Mn-extension: The KdV equation”, Physics Letters A, 533 (2025), 130217  crossref
    2. Xifang Cao, “Bäcklund transformation with two pseudo-potentials for a coupled KdV system”, Phys. Scr., 99:4 (2024), 045254  crossref
    3. Raymond Aschheim, David Chester, Daniele Corradetti, Klee Irwin, “Three Fibonacci-chain aperiodic algebras”, Quaestiones Mathematicae, 46:12 (2023), 2475  crossref
    4. Xifang Cao, “Bäcklund transformation for a family of coupled KdV equations”, Phys. Scr., 98:11 (2023), 115209  crossref
    5. Ivan P. Shestakov, Vladimir V. Sokolov, “Multi-component generalizations of mKdV equation and nonassociative algebraic structures”, J. Algebra Appl., 20:04 (2021), 2150050  crossref
    6. V. V. Sokolov, “Integrable evolution systems of geometric type”, Theoret. and Math. Phys., 202:3 (2020), 428–436  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. María Alejandra Alvarez, Isabel Hernández, Ivan Kaygorodov, “Degenerations of Jordan Superalgebras”, Bull. Malays. Math. Sci. Soc., 42:6 (2019), 3289  crossref
    8. I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Habibullin I.T. Khakimova A.R., “On the Recursion Operators For Integrable Equations”, J. Phys. A-Math. Theor., 51:42 (2018), 425202  crossref  isi  scopus
    10. Ian A. B. Strachan, Dafeng Zuo, “Frobenius manifolds and Frobenius algebra-valued integrable systems”, Lett Math Phys, 107:6 (2017), 997  crossref
    11. Junfeng Song, Changzheng Qu, Ruoxia Yao, “Integrable systems and invariant curve flows in symplectic Grassmannian space”, Physica D: Nonlinear Phenomena, 349 (2017), 1  crossref
    12. Da-Wei Zuo, Hui-Xian Jia, “Exact Solutions for a Coupled Korteweg–de Vries System”, Zeitschrift für Naturforschung A, 71:11 (2016), 1053  crossref
    13. Deng‐Shan Wang, Jiang Liu, Zhifei Zhang, “Integrability and equivalence relationships of six integrable coupled Korteweg–de Vries equations”, Math Methods in App Sciences, 39:12 (2016), 3516  crossref
    14. Alberto De Sole, Victor G. Kac, Daniele Valeri, Springer INdAM Series, 8, Trends in Contemporary Mathematics, 2014, 13  crossref
    15. Alberto De Sole, Victor G. Kac, Daniele Valeri, “Classical W W -Algebras and Generalized Drinfeld–Sokolov Hierarchies for Minimal and Short Nilpotents”, Commun. Math. Phys., 331:2 (2014), 623  crossref
    16. A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, “Kharakteristicheskie koltsa Li i integriruemye modeli matematicheskoi fiziki”, Ufimsk. matem. zhurn., 4:3 (2012), 17–85  mathnet  mathscinet
    17. A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154  mathnet
    18. Junfeng Song, Changzheng Qu, “Integrable systems and invariant curve flows in centro-equiaffine symplectic geometry”, Physica D: Nonlinear Phenomena, 241:4 (2012), 393  crossref
    19. Ziemowit Popowicz, “The Integrability of New Two-Component KdV Equation”, SIGMA, 6 (2010), 018, 10 pp.  mathnet  crossref  mathscinet
    20. Wang D.-Shan, “Integrability of a coupled KdV system: Painlevé property, Lax pair and Backlund transformation”, Applied Mathematics and Computation, 216:4 (2010), 1349–1354  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:527
    Full-text PDF :224
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025