Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 87, Number 3, Pages 323–375 (Mi tmf5495)  

This article is cited in 18 scientific papers (total in 18 papers)

Splitting of the lowest energy levels of the Schrödinger equation and asymptotic behavior of the fundamental solution of the equation hut=h2Δu/2V(x)uhut=h2Δu/2V(x)u

S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. P. Maslov
References:
Abstract: For the equation hu/t=h2Δu/2V(x)uhu/t=h2Δu/2V(x)u with positive potential V(x)V(x), global exponential asymptotic behavior of the fundamental solution is obtained by the method of the tunnel canonical operator. In the case of a potential with degenerate points of global minimum, the behavior of the solutions to the Cauchy problem is investigated at times of order t=h(1+ϰ), ϰ>0. The developed theory is used to obtain exponential asymptotics of the lowest eigenfunctions of the Schrödinger operator h2Δ/2V(x) and to estimate the tunnel effect.
Received: 29.12.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 87, Issue 3, Pages 561–599
DOI: https://doi.org/10.1007/BF01017945
Bibliographic databases:
Language: Russian
Citation: S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. P. Maslov, “Splitting of the lowest energy levels of the Schrödinger equation and asymptotic behavior of the fundamental solution of the equation hut=h2Δu/2V(x)u”, TMF, 87:3 (1991), 323–375; Theoret. and Math. Phys., 87:3 (1991), 561–599
Citation in format AMSBIB
\Bibitem{DobKolMas91}
\by S.~Yu.~Dobrokhotov, V.~N.~Kolokoltsov, V.~P.~Maslov
\paper Splitting of the lowest energy levels of the Schr\"odinger equation and asymptotic behavior of the fundamental solution of the equation $hu_t=h^2\Delta u/2-V(x)u$
\jour TMF
\yr 1991
\vol 87
\issue 3
\pages 323--375
\mathnet{http://mi.mathnet.ru/tmf5495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1129671}
\zmath{https://zbmath.org/?q=an:0745.35033}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 3
\pages 561--599
\crossref{https://doi.org/10.1007/BF01017945}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GW78600001}
Linking options:
  • https://www.mathnet.ru/eng/tmf5495
  • https://www.mathnet.ru/eng/tmf/v87/i3/p323
  • This publication is cited in the following 18 articles:
    1. E. V. Vybornyi, S. V. Rumyantseva, “Tunneling with oscillating effect of ground states of a quadratic operator on a hyperboloid”, Math. Notes, 116:6 (2024), 1233–1248  mathnet  crossref  crossref
    2. A. Yu. Anikin, S. Yu. Dobrokhotov, I. A. Nosikov, “Librations with large periods in tunneling: Efficient calculation and applications to trigonal dimers”, Theoret. and Math. Phys., 213:1 (2022), 1453–1476  mathnet  crossref  crossref  mathscinet  adsnasa
    3. A. Yu. Anikin, M. A. Vavilova, “Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential”, Theoret. and Math. Phys., 202:2 (2020), 231–242  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. Hiromitsu Harada, Amaury Mouchet, Akira Shudo, “Riemann surfaces of complex classical trajectories and tunnelling splitting in one-dimensional systems”, J. Phys. A: Math. Theor., 50:43 (2017), 435204  crossref
    5. A. Yu. Anikin, S. Yu. Dobrokhotov, M. I. Katsnel'son, “Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers”, Theoret. and Math. Phys., 188:2 (2016), 1210–1235  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. M. V. Karasev, E. M. Novikova, E. V. Vybornyi, “Non-Lie Top Tunneling and Quantum Bilocalization in Planar Penning Trap”, Math. Notes, 100:6 (2016), 807–819  mathnet  mathnet  crossref  isi  scopus
    7. E. V. Vybornyi, “Tunnel splitting of the spectrum and bilocalization of eigenfunctions in an asymmetric double well”, Theoret. and Math. Phys., 178:1 (2014), 93–114  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    8. E. V. Vybornyi, “Energy splitting in dynamical tunneling”, Theoret. and Math. Phys., 181:2 (2014), 1418–1427  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    9. J. Brüning, S. Yu. Dobrokhotov, R. V. Nekrasov, “Splitting of lower energy levels in a quantum double well in a magnetic field and tunneling of wave packets in nanowires”, Theoret. and Math. Phys., 175:2 (2013), 620–636  mathnet  crossref  crossref  zmath  adsnasa  isi  elib  elib
    10. A. Yu. Anikin, “Librations and ground-state splitting in a multidimensional double-well problem”, Theoret. and Math. Phys., 175:2 (2013), 609–619  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    11. Anikin A.Yu., “Asymptotic Behavior of the Maupertuis Action on a Libration and Tunneling in a Double Well”, Russ. J. Math. Phys., 20:1 (2013), 1–10  crossref  isi
    12. Sergey Y. Dobrokhotov, Anatoly Y. Anikin, Nonlinear Physical Systems, 2013, 85  crossref
    13. David Holcman, Ivan Kupka, “Singular perturbation for the first eigenfunction and blow-up analysis”, Forum Mathematicum, 18:3 (2006)  crossref
    14. V. Sordoni, “Instantons and splitting”, Journal of Mathematical Physics, 38:2 (1997), 770  crossref
    15. Ariel Caticha, “Construction of exactly soluble double-well potentials”, Phys. Rev. A, 51:5 (1995), 4264  crossref
    16. S. Yu. Dobrokhotov, V. N. Kolokoltsov, “Splitting amplitudes of the lowest energy levels of the Schrödinger operator with double-well potential”, Theoret. and Math. Phys., 94:3 (1993), 300–305  mathnet  crossref  mathscinet  zmath  isi
    17. B. Yu. Sternin, V. E. Shatalov, “On the Cauchy problem for differential equations in spaces of resurgent functions”, Russian Acad. Sci. Izv. Math., 40:1 (1993), 67–94  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    18. V. P. Belavkin, V. N. Kolokoltsov, “Semiclassical asymptotics of quantum stochastic equations”, Theoret. and Math. Phys., 89:2 (1991), 1127–1138  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:914
    Full-text PDF :328
    References:123
    First page:5
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025