Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1991, Volume 87, Number 1, Pages 154–156 (Mi tmf5478)  

This article is cited in 33 scientific papers (total in 33 papers)

A realization fo the q-harmonic oscillator

N. M. Atakishiyev, S. K. Suslov
References:
Abstract: It is shown that factorization of the difference equation for the Stieltjes–Wigert polynomials leads to a new explicit realization for the q-harmonic oscillator.
Received: 29.10.1990
English version:
Theoretical and Mathematical Physics, 1991, Volume 87, Issue 1, Pages 442–444
DOI: https://doi.org/10.1007/BF01016585
Bibliographic databases:
Language: Russian
Citation: N. M. Atakishiyev, S. K. Suslov, “A realization fo the q-harmonic oscillator”, TMF, 87:1 (1991), 154–156; Theoret. and Math. Phys., 87:1 (1991), 442–444
Citation in format AMSBIB
\Bibitem{AtaSus91}
\by N.~M.~Atakishiyev, S.~K.~Suslov
\paper A~realization fo the $q$-harmonic oscillator
\jour TMF
\yr 1991
\vol 87
\issue 1
\pages 154--156
\mathnet{http://mi.mathnet.ru/tmf5478}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1122785}
\zmath{https://zbmath.org/?q=an:1189.81100}
\transl
\jour Theoret. and Math. Phys.
\yr 1991
\vol 87
\issue 1
\pages 442--444
\crossref{https://doi.org/10.1007/BF01016585}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991HG83500015}
Linking options:
  • https://www.mathnet.ru/eng/tmf5478
  • https://www.mathnet.ru/eng/tmf/v87/i1/p154
  • This publication is cited in the following 33 articles:
    1. Edmundo J. Huertas, Alberto Lastra, Anier Soria-Lorente, Víctor Soto-Larrosa, “On zero behavior of higher-order Sobolev-type discrete $q-$Hermite I orthogonal polynomials”, Numer Algor, 2024  crossref
    2. E. I. Jafarov, “Description of the Bluffing Phenomenon in the Untrusted Seller–Buyer Relationship via the Wigner Function of the q-Deformed Quantum Harmonic Oscillator Model”, Studies in Microeconomics, 2024  crossref
    3. Rafael Reno S. Cantuba, “Compactness property of Lie polynomials in the creation and annihilation operators of the q-oscillator”, Lett Math Phys, 110:10 (2020), 2639  crossref
    4. H. Fakhri, S. E. Mousavi Gharalari, “Approach of the continuous q-Hermite polynomials to x-representation of q-oscillator algebra and its coherent states”, Int. J. Geom. Methods Mod. Phys., 17:02 (2020), 2050021  crossref
    5. Rezan Sevinik Ad{\i}güzel, Sakina Alwhishi, Mehmet Turan, “On the limit of discrete q-Hermite I polynomials”, Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics, 2019, 2272  crossref
    6. Rivera-Mocinos E., Sadurni E., “Inverse lattice design and its application to bent waveguides”, J. Phys. A-Math. Theor., 49:17 (2016), 175302  crossref  mathscinet  zmath  isi  elib  scopus
    7. Galina Filipuk, Maciej Haneczok, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, 2013, 97  crossref
    8. J. S. Dehesa, P. Sánchez-Moreno, R. J. Yáñez, “Relative Fisher information of discrete classical orthogonal polynomials”, Journal of Difference Equations and Applications, 18:3 (2012), 489  crossref
    9. R. Álvarez-Nodarse, “À la carte recurrence relations for continuous and discrete hypergeometric functions”, SeMA, 55:1 (2011), 41  crossref
    10. R. S. Costas-Santos, F. Marcellán, “q-Classical Orthogonal Polynomials: A General Difference Calculus Approach”, Acta Appl Math, 111:1 (2010), 107  crossref
    11. E I Jafarov, S Lievens, S M Nagiyev, J Van der Jeugt, “The Wigner function of aq-deformed harmonic oscillator model”, J. Phys. A: Math. Theor., 40:20 (2007), 5427  crossref
    12. R. Álvarez-Nodarse, J.L. Cardoso, “Recurrence relations for discrete hypergeometric functions”, Journal of Difference Equations and Applications, 11:9 (2005), 829  crossref
    13. R Álvarez-Nodarse, N M Atakishiyev, R S Costas-Santos, “Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra”, J. Phys. A: Math. Gen., 38:1 (2005), 153  crossref
    14. R. Alvarez-Nodarse, M. K. Atakishiyeva, N. M. Atakishiyev, “On a q-extension of the linear harmonic oscillator with the continuous orthogonality property on ℝ”, Czech J Phys, 55:11 (2005), 1315  crossref
    15. Andreas Ruffing, Julian Lorenz, Konstantin Ziegler, “Difference ladder operators for a harmonic Schrödinger oscillator using unitary linear lattices”, Journal of Computational and Applied Mathematics, 153:1-2 (2003), 395  crossref
    16. G Bangerezako, M N Hounkonnou, “The factorization method for the general second-orderq-difference equation and the Laguerre Hahn polynomials on the generalq-lattice”, J. Phys. A: Math. Gen., 36:3 (2003), 765  crossref
    17. R Álvarez-Nodarse, R S Costas-Santos, “Factorization method for difference equations of hypergeometric type on nonuniform lattices”, J. Phys. A: Math. Gen., 34:27 (2001), 5551  crossref
    18. Metin Arik, Natig M Atakishiyev, Kurt Bernardo Wolf, “Quantum algebraic structures compatible with the harmonic oscillator Newton equation”, J. Phys. A: Math. Gen., 32:33 (1999), L371  crossref
    19. R. Álvarez-Nodarse, J. Arvesú, “On theq-polynomials in the exponential latticex(s)=c1qs+c3”, Integral Transforms and Special Functions, 8:3-4 (1999), 299  crossref
    20. R Álvarez-Nodarse, E Buendía, J S Dehesa, “The distribution of zeros of generalq-polynomials”, J. Phys. A: Math. Gen., 30:19 (1997), 6743  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :110
    References:57
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025